®

Check for
updates

Plot Composition by Mapping Situation
Calculus Schemas into Petri Net Representation

Edirlei Soares de Limal>2®) @, Antonio L. Furtado® ®, Bruno Feij(’)3 s
and Marco A. Casanova’

1 IADE, Universidade Europeia, Av. D. Carlos I 4, 1200-649 Lisbon, Portugal
edirlei.lima@universidadeeuropeia.pt
2 UNIDCOM/IADE, Av. D. Carlos I 4, 1200-649 Lisbon, Portugal
3 Department of Informatics, PUC-Rio, R. Marqués de Sdo Vicente 225, Rio de Janeiro, Brazil
{furtado, casanoval}l@inf.puc-rio.br

Abstract. In this paper we propose a new plot composition method based on
situation calculus and Petri net models, which are applied, in a complementary
fashion, to a narrative open to user co-authorship. The method starts with the
specification of situation calculus schemas, which allow a planning algorithm to
check if the specification covers the desired cases. A Petri net is then automatically
derived from the schemas in a second phase, guiding interactive plot generation
and dramatization. The applicability of the proposed method is validated through
the implementation of an interactive storytelling system capable of representing
the generated Petri net models using 2D graphics and animations.

Keywords: Petri net - Situation calculus - Interactive storytelling - Plot
generation - Dramatization

1 Introduction

Readers enjoy a far more pleasant experience with narratives in which they are invited
to participate as co-authors. This claim is convincingly expressed by Umberto Eco [8],
when talking of “open works” and “works in movement,” i.e., works that deliberately
leave decisions on the meaning of specific passages to the care of the reader. However,
this ideal, which is hard to satisfy in book format, only now is truly reachable through
interactive narratives developed for digital environments.

The most popular approach to interactive narrative, especially in narrative-driven
games (e.g., Heavy Rain (2010) and Detroit Become Human (2018) by Quantic Dream),
is the branching technique (also known as branching path stories [16]). In this technique,
the player makes a choice at each branching point. The writer usually builds a rigid struc-
ture of branching points through a manually authored process without any consistency
check. User decisions involve choosing which way to proceed at branching points, thus
leading, knowingly or not, to a subsequent outcome. To identify such branching points,
designers usually use Petri nets [3, 23], a graphically structured modeling technique for
dynamic systems [22].

© IFIP International Federation for Information Processing 2022
Published by Springer Nature Switzerland AG 2022

B. Gobl et al. (Eds.): ICEC 2022, LNCS 13477, pp. 61-75, 2022.
https://doi.org/10.1007/978-3-031-20212-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20212-4_5&domain=pdf
http://orcid.org/0000-0002-2617-3394
http://orcid.org/0000-0003-3710-624X
http://orcid.org/0000-0003-4441-2632
http://orcid.org/0000-0003-0765-9636
https://doi.org/10.1007/978-3-031-20212-4_5

62 E. S. de Lima et al.

A more suitable and robust approach is to treat a narrative as an application process
where, instead of a single linear plot, the designers (authors) define a fixed repertoire
of predefined event-producing operations containing preconditions and post-conditions.
These conditions enforce the intended conventions and preserve consistency when the
users (readers performing as co-authors) are allowed to decide. Postconditions consist
of facts asserted or retracted as the consequence of executing the operator. And as we
argue in this paper, situation calculus [15] is a suitable modeling strategy that can exploit
backward-chaining plan generation based on the operators above mentioned (e.g., using
STRIPS [11]) to show what specific plots can emerge.

This paper presents a new plot composition method that combines both modeling
techniques in a complementary fashion. We consider Petri nets from the perspective
of event logs, as proposed by Wil van der Aalst [1]. Our method starts with specify-
ing situation calculus schemas for a chosen process application. It then automatically
derives a Petri net representation from these schemas, which is informative enough to be
employed for interactive plot generation and dramatization. The method is analogously
applicable to information system domains, where business transactions can be treated
in the same way as narrative plots.

The contribution of our work is twofold. First, we shed light on the complementar-
ity between situational calculus and Petri nets. Second, we have taken the process of
composing interactive plots to a more robust and semantically consistent level. In our
approach, situation calculus is used at specification time, enforcing integrity constraints,
and checking if the specification allows all desirable use cases while disallowing unde-
sirable cases. In the final step, the automatically generated Petri net allows visualizing
the processes and effectively executing them.

The paper is organized as follows. Section 2 discusses related work. Section 3
presents our approach to deriving a Petri net model from a situation calculus model
in a narrative domain. Section 4 explores the application of the proposed method in a
fully implemented interactive storytelling system. Finally, concluding remarks are the
object of Sect. 5.

2 Related Work

Situation calculus [15] provides a second-order logic method to formalize state transi-
tions caused by event-producing operations. Petri nets, in turn, are commonly utilized
in Process Mining work [1] for obtaining an implicit model of an application, by dis-
covering the partial order requirements prevailing on a significant number of traces
extracted from an execution log. For example, in [14], Petri net synthesis is preceded by
a preliminary activity mining algorithm.

From [1] we borrowed and used in our first experiments [19] the simple introductory
case of a request processing application, represented by a Petri net. When specifying
the trial by combat application that serves as a running example in the present paper, we
were able to end up with a structurally analogous Petri net representation, thus favoring
the claim [6] that serious and entertainment applications can be treated by the same
modelling formalisms.

Research involving situation calculus and Petri net formalisms includes in special
[24], which proposes a formal ontology that highlights the correspondence between a

Plot Composition by Mapping Situation Calculus Schemas into Petri Net 63

sequence of actions starting from an initial state in situation calculus, and a sequence of
transition firings starting from an initial node in a Petri net. However, the aforementioned
work focuses only on the analysis of structural properties of Petri nets and situation
calculus models.

The relations between Petri nets and automated planning were also explored in pre-
vious research, such as [13], where a method to transform planning graphs into Petri
nets is presented and used to demonstrate that Petri net unfolding, a form of partial order
reduction, can be used to recognize independent planning subproblems. The transfor-
mation of Petri net models into planning problems was also explored in [2], which is the
inverse of the process discussed in this paper. Plans are modelled as Petri nets in [25]
and plans are used to produce workflows in [10] (re-calling that Petri nets can be viewed
as a particular form of workflow).

Petri nets were also applied in interactive storytelling contexts. Riedl et al. [23] uses a
specialized type of Petri net, called colored Petri net, to allow authors to manually model
interactive narratives as a process in which multiple players can navigate through dif-
ferent narrative scenes. During dramatization, their system uses an execution algorithm
that monitors for situations in which the Petri net fails to account for player actions.
When a failure situation is identified, a planning algorithm is used to generate new nar-
rative events to restore the integrity of the Petri net. In this paper, instead of relying on
manually authored Petri nets, we focus on the automatic process of mapping situation
calculus schemas into Petri net models.

Petri nets are also commonly used as modelling tools to design narratives and char-
acter behaviors in games. An example of work that employs manually authored Petri
nets to represent narrative plots is presented by Balas et al. [3], which uses hierarchical
Petri nets to define branching narratives for games. Lee and Cho [17] also proposed
a quest generation method for games where quests are modeled as Petri nets, which
are activated during a game session according to characters’ goals and the current world
state. A similar approach is explored by El-Sattar [9], who uses Petri nets as a state-based
model to design narrative plots. The use of Petri nets to model and control individual
characters in an interactive storytelling context is also explored by Brom and Abonyi
[4], who utilize manually designed Petri nets to represent the narrative of the game.

Although Petri nets have been previously explored as a structure to represent narrative
plots, most of the previous research focus on the use Petri nets as a modelling tool to allow
authors to design interactive narratives. In this paper, we follow a different approach and
focus on plot composition by automatically mapping situation calculus schemas into
Petri net representations that are suitable for interactive dramatization.

3 From Situation Calculus to Petri Net Models

3.1 The Basic Situation Calculus Model

Situation calculus is a logical language used to represent and reason about dynamic
worlds, which has been successfully applied to a variety of domains and problems,
including narrative generation [6]. According to Kowalski [15], situation calculus, as a
logic program, can be compactly expressed by the following two clauses, which define

64 E. S. de Lima et al.

what sentences P hold in the situation result(A, S) that is the result of the transition from
state S by an action of type A:

holds(P, result(A, S)) < happens(A4, S) A initiates(4, S, P)
holds(P, result(A, S)) < happens(4, S) A holds(P, S) N —terminates(4, S, P)

noting that the second clause of this second-order logic formulation avoids the expo-
nential proliferation of first-order logic clauses, which constitutes the so-called frame
problem by eliminating the need to specify every class of facts (P) that are not affected
by the execution of an operation (A).

In turn, these situation calculus clauses suggest an elementary plan-generator, which
can be thus expressed in natural language:

e A fact F holds if it is true in the initial state;

e F holds if it is added as one of the effects of an operation Op, and the preconditions
of Op hold at the current state;

e [holds after the execution of an operation Op if it did already hold at the current state
and if it is not deleted as one of the effects of Op.

and then translated into a Prolog program:

holds (Fact, [start]) :- initial state(Fact), !.

holds (Fact, [Operation | Current state]) :- added(Fact, Operation),
precond (Operation, Current state).

holds (Fact, [Operation | Current state]) :- not deleted(Fact, Operation),

holds (Fact, Current state).

Although this elementary program is able to handle overly simple cases, such as
the well-known monkey-and-bananas problem, it must be considerably expanded for
practical usage, such as proposed in [5, 7].

As a general starting point to apply situation calculus in storytelling domains, one
must specify static and dynamic schemas, which include the classes of facts that will
eventually populate states, a set of facts describing the initial state, and a fixed repertoire
of event-producing operations for performing state changes in conformance with the
applicable integrity constraints. Each operation is defined in terms of pre-conditions,
which consist of conjunctions of positive and/or negative terms expressing facts, and
any number of post-conditions, consisting of facts to be asserted or retracted as the
effect of executing the operation (cf. The STRIPS model [11]).

As an illustration, we shall concentrate on a simple narrative incident taken and
adapted from the film Excalibur, directed, produced, and co-written by John Boorman
in 1981. The incident can be thus summarized:

Sir Gawain accuses Queen Guinevere of adultery. A trial by combat is announced,
there being two candidate knights to claim the Queen’s innocence: Lancelot, a
worthy knight, famous for his many victories, and Perceval, who would be no
less reputed in the future, but at that time still had little combat experience. The
Queen would be vindicated if her defender could defeat the accuser, otherwise she
would be condemned. The trial could be reinitiated if a last-minute replacement
of defender chanced to occur.

Plot Composition by Mapping Situation Calculus Schemas into Petri Net 65

The entities involved in the incident and their properties are specified through a static
schema:!

entity(person, pn).

entity (knight, kn).

attribute (knight, strength).

attribute (knight, loyal).

entity(accuser, an).

entity (defendant, dn).

attribute (defendant, has defender).
entity(defender, dn).

entity(challenger, cn).

entity (offense, on).

relationship (accusation, [defendant, offense]).
attribute (accusation, vindicated).

attribute (accusation, condemned) .

relationship (encounter, [challenger, defender]).
attribute (encounter, winner).

The event-producing operations are defined in a dynamic schema. For example, the
operator for the combat event is defined below, noting that the V parameter identifies
the winner, who can be either the accuser or the defending knight, depending on their
strength:

operation (combat (A, K, D, O, V)).

precond (combat (A, K, D, O, V), (accusation(D, 0O), challenger (a),
defender (K), strength(K, Sk), strength(aA, Sa),
if(Sk > Sa, V=K, V=A24))).

added (encounter (A, K), combat(A, K, D, O, V)).

added (winner ([A, K], V), combat (A, K, D, O, V)).

added (defendant (D), accuse(A, D, 0)).

In order to conduct experiments, an initial state must be introduced, indicating the
instances of the entity classes and the specific initial values of their properties:

person ('Guinevere') .
knight ('Lancelot"') .

loyal ('Lancelot', true).
strength ('Lancelot', 200).
knight ('Perceval').

loyal ('Perceval', true).
strength ('Perceval', 100).
knight ('Gawain') .

loyal ('Gawain', false).
strength ('Gawain', 150).
offense (murder) .

offense (adultery) .

Described in this fashion, the well-intentioned but still immature Perceval would
stand no chance to defeat Gawain when playing the role of defender. This default result
is evidenced in the plan-generated plot below, in which the last parameter of the combat
operation (in boldface) indicates the winner:

LA complete description of the static and dynamic schemas used in this example is available at:
http://www.icad.puc-rio.br/~logtell/petri-net/schemas-trial-by-combat.pdf.

http://www.icad.puc-rio.br/~logtell/petri-net/schemas-trial-by-combat.pdf

66 E. S. de Lima et al.

accuse (Gawain, Guinevere, adultery), enter challenger (Gawain, Guinevere,

adultery), enter beginner defender (Perceval, Guinevere, adultery), com-
bat (Gawain, Perceval, Guinevere, adultery, Gawain), condemn (Guinevere,
adultery) .

On the contrary, Lancelot had what was required to triumph, thereby establishing
the Queen’s innocence:

accuse (Gawain, Guinevere, adultery), enter challenger (Gawain, Guinevere,
adultery), enter worthy defender (Lancelot, Guinevere, adultery), com-
bat (Gawain, Lancelot, Guinevere, adultery, Lancelot), vindi-

cate (Guinevere, adultery).

Both for serious and for entertainment applications, the situation calculus model
leads to the verification, by applying plan-generation, whether the proposed specifica-
tion allows all desirable use cases and effectively disallows those which transgress the
intended conventions [6]. On the other hand, the Petri net model, like other workflow
engines, can be designed to run in a tightly restrictive mode, with the additional asset of
the explicit determination of the workable sequences and of the branching points open
to the user’s choice — which strongly suggests that it is particularly qualified for the
dramatization of interactive narratives.

In this paper, we argue that the two models are complementary to each other, to
the point that the Petri net representation can be generated from the situation calculus
model, over which an execution method, analogous to the standard token-based Petri
net method, can be operated.

3.2 Deriving a Petri Net from a Situation Calculus Model

In the semi-formal terminology employed in this paper, a Petri net is a graph with two
kinds of nodes: places (round nodes, either empty or containing exactly one token) and
transitions (square nodes representing operations).

We define a Petri net edge as triple (Op;, Pn, Op;), with two (operational) transition
nodes (Op; and Op;) and an intervening place node (Pn). Petri net edges are positioned
S0 as to express a partial ordering in the execution of events, which may follow each
other in linear sequences, possibly branching to form and-forks, or-forks, and-joins, and
or-joins. We shall also consider a simple case of backward loop, allowing to return to a
previous position and try different branching options.

Our approach to generate a Petri net model is based on the observation that the
ordering requirements of a Petri net can be derived from the situation calculus model.
The first basic consideration is that there exists an edge connecting (through a Pn node)
Op; and Op; if the post-conditions of Op; have a non-empty intersection with the pre-
conditions of Op;. There is also an edge from Op; to Op; if some post-condition of Op;
cancels some post-condition of Op; (thus causing a backward loop, whereby Op; can
be retried).

Forks occur when there are edges leading from an Op node into two or more nodes
Opj, Opa, ..., Op,. A fork is an or-fork if Op;, Op>, ..., Op, contain either incompat-
ible pre-conditions or redundant post-conditions. Incompatibility typically results from

ZA comprehensive and still useful classic survey of the Petri net formalism is provided in [21].

Plot Composition by Mapping Situation Calculus Schemas into Petri Net 67

conflicting value comparisons as well as from logic opposition (P vs. not P). In addition,
we consider any pair Op; and Op; incompatible if the execution of one of them would
be rendered impossible by the execution of the other, which might happen if the pre-
conditions of one of these operations require P (or not P), whereas the post-conditions
of the other produce the deletion of P (or, respectively, the addition of P). A fork is an
and-fork if none of these situations holds.

Joins occur when there are edges from two or more nodes Opj, Opa, ..., Op, into
a single node Op. A join is an or-join if Op;, Op2, ..., Op, contain redundant post-
conditions, or post-conditions that cancel the post-conditions of Op (which induces a
backward loop enabling Op to be retried). A join is an and-join if none of these situations
holds.

By thus considering the presence of edges, as well forks and joins, we have a method
to automatically generate a clausal representation of the Petri net corresponding to a given
situation calculus specification.

In order to illustrate the results of our method, we shall return to the trial by combat
example described in the previous section. By applying our method, we obtain the clausal
representation below describing the edges of the Petri net. The one-letter operation labels
provide a useful abbreviation, commonly employed in process mining [1] to represent
transactions as parameter-less fraces.

(g, start, a:accuse(a, d, 0))

(a:accuse(a, d, o), s(l), b:enter worthy defender(k, d, o))

(a:accuse(a, d, o), s(l), c:enter beginner defender(k, d, o))
(a:accuse(a, d, o), s(2), d:enter challenger(a, d, o))
(b:enter worthy defender(k, d, o), s(3), e:combat(a, k, d, o, Vv))
(c:enter beginner defender(k, d, o), s(3), e:combat(a, k, d, o, v))
(d:enter challenger(a, d, o), s(4), e:combat(a, k, d, o, Vv))

(e:combat (a, k, d, o, v), s(5), f:reinitiate trial(a, k, d, o, v))
(e:combat(a, k, d4, o, v), s(5), g:vindicate(d, o))

(e:combat(a, k, d, o, v), s(5), h:condemn(d, o))

(f:reinitiate trial(a, k, d, o, v), s(1), b:enter worthy defender(k, d, o))
(f:reinitiate trial(a, k, d, o, v), s(1), c:enter beginner defender(k,d,o0))
(f:reinitiate trial(a, %k, d, o, v), s(2), d:enter challenger(a, d, o))
(g:vindicate(d, o), end, @)

(h:condemn (d, o), end, @)

The detected cases of or-forks and or-joins are listed below:

Or-forks:
accuse(a, d, o) — enter worthy defender(k, d, o),
enter beginner defender(k, d, o)
combat (a, k, d, o, v) — condemn(d, o),
vindicate(d, o),
reinitiate trial(a, k, d, o, V)
reinitiate trial(a, k, d, o, v) — enter worthy defender(k, d, o),
enter beginner defender(k, d, o)
Or-joins: N N
combat (a, k, d, o, v) <« enter worthy defender (k, d, o),
enter beginner defender(k, d, o)
enter beginner defender(k, d, o) « accuse(a, d, o),
reinitiate trial(a, k, d, o, V)
enter worthy defender(k, d, o) < accuse(a, d, o)
reinitiate trial(a, k, d, o, v)
enter challenger(a, d, o) < accuse(a, d, o)
reinitiate trial(a, k, d, o, v)

68 E. S. de Lima et al.

Once the clausal representation is generated, a visual representation of the Petri net
can be created, as shown in Fig. 1.

d @

enter_challenger

h
a c e condemn @

accuse ‘enter_beginner combat
_defender g

vindicate

b reinitiate_trial

enter_worthy f
_defender I

Fig. 1. Petri net drawn from the clausal representation derived from the situation calculus model.

Operations coming from and-forks can be executed in any order. In addition, they
might be executed in parallel to simulate narrative events taking place at the same time.
As a preliminary consideration, note that, by construction, or-forks stem from place
nodes, and or-joins always converge to a single place node. Since place nodes can
contain at most one token, or-type branching is restricted — as should be expected — to
the selection of a single option. In contrast, and-forks stem from operation nodes, and
and-joins converge to an operation node. Differently from place nodes, operation nodes
are able to emit tokens to all outgoing place nodes (one token for each).

The generated Petri net is ready to be executed in order to establish the plot for an
interactive narrative. According to the standard token-based Petri net process, executing a
Petri net begins by placing a token in the start place node. The place node is then activated
which signifies that the token is consumed, and the single operation node attached to
the start node is enabled. In the next steps, successive place nodes are activated after
receiving tokens from enabled nodes, and some operation node to which all incoming
place nodes are active (i.e., contain a token) is chosen to be enabled. The process ends
when some operation node connected to the end place node is reached.

An interactive trace-generation program that allows users to traverse through the
Petri net generated for the trial by combat is available online at:

http://www.icad.puc-rio.br/~logtell/petri-net/trial-by-combat/.

4 Interactive Storytelling Application

In order to validate the applicability of our method, we implemented a full interactive
storytelling system capable of representing the generated Petri net models using 2D
graphics and animations.

4.1 System Architecture

The architecture of our interactive storytelling system is based on a client-server model
(Fig. 2), where the server is responsible for the generation of the plot (Petri net model) and

http://www.icad.puc-rio.br/~logtell/petri-net/trial-by-combat/

Plot Composition by Mapping Situation Calculus Schemas into Petri Net 69

the client handles the dramatization of the story. On the server-side, the Network Manager
receives plot requests from clients and uses the Prolog implementation described in the
previous sections to generate a Petri net, which is then sent to clients for dramatization.
On the client-side, the Drama Manager interprets and controls the execution of the Petri
net by sending action requests to virtual Actors. The process of composing scenes for
dramatization (i.e., selecting the Actors and Locations to show) is performed by the
Scene Composer, which is constantly being informed by the Drama Manager about the
type of scene being dramatized.

User interaction is handled by the Interaction App module, which is implemented
as a mobile app that uses a Convolutional Neural Network classifier to identify hand-
draw sketches (see [20] for more details about the sketch recognition process). Once a
sketch is recognized, its identification class is sent to the Interaction Server through a
TCP/IP network message. The Interaction Server module is responsible for receiving
and interpreting the sketch classes sent by clients. Two interaction modes are supported:
(1) single user mode, in which the first valid user sketch received by the system is
immediately used as the interference choice to be incorporated into the story; and (2)
voting mode, in which the Interaction Server collects all users’ sketches during a certain
time and then selects one through a voting process.

/ Dramatization \

plot
request

' i
|
H |
I 1
I 1
I 1
! i
etri net | Drama action i
P T Actors !
I Manager requests !
I
1
user | |
. . 1
interactions, scene !
|
|
1
1
1
1
1
1
|
|
1
1
1
1
1
|
|
1
1
1
1

Network
Manager
J J
plot petri
request net

Scene { R I
Locations
Composer
o -/

Interaction App

user
sketches

|
! 1
! 1
! 1
! 1
' 1
H 1
! L
! 1
! 1
! L
! 1
1

i '
! 1
! 1
! 1
! 1
! 1
1

i v :
H 1
! 1
! 1
! 1
! 1
! 1
1

' i
! 1
! 1
! 1
! 1
! L
! 1
' 1
H 1
! 1
! '

Fig. 2. Architecture of our interactive storytelling system.

Multiple programming languages were used in the implementation of our interactive
storytelling system. As described in the previous sections, the process of generating
plots in the Petri net model is implemented in Prolog. However, the Plot Generator also
includes an additional module called Network Manager, which is implemented in C# and
provides network communication capabilities to the system, allowing us to implement

70 E. S. de Lima et al.

the plot generation process as a service provided by a network server. On the client-
side, the dramatization system is implemented in Lua’ using the Léve 2D framework,*
which provides the graphical functionalities needed to create visual representations for
the story. The interaction process is implemented in Java as an Android app, which
communicates with a Web service implemented in PHP. See [12] for more details about
the design of the sketch-based interaction system.

The Petri net representation of the plot created by the Plot Generator consists of a
directed graph G = (V, E), where V is a set of nodes {v;, v2, ..., v,} and E is a set of
edges {e; = (vi, vj), ..., em = (Vk, vy)}. Each node v; is a pair (id;, ev;), where id; is
a unique name that identifies the node v; and ev; is an event description in a predicate
format for transition nodes (e.g., accuse (a,d, o)), or the constant nil for place
nodes (as described in Sect. 3.2, places are nodes that can contain tokens and transitions
are nodes that represent operations).

When encoding the Petri net to be sent to the dramatization system, the graph is
simplified as a set of edges, where each edge is represented in the format [id;: ev;, id;:
ev;]. For example, the initial edges of the Petri net generated for the trial by combat
(connecting nodes start, a, s(1), and s(2), as illustrated in Fig. 1), can be described as:

[start:nil, a:accuse(a, d, o)]
[a:accuse(a, d, o), s(l1):nil]

[a:accuse(a, d, o), s(2):nil]

4.2 Interactive Dramatization

The process of dramatizing the Petri net representation of the plot involves a simple step-
wise algorithm that controls the execution of the story by updating a list of active events
according to a standard token-based execution approach. As described in Algorithm 1,
function Execute-PetriNet-Step receives by parameter a Petri net PN and a list
C with the nodes that were executed in the previous step of the algorithm (for the first
step: C={start}). The algorithm performs all the operations to activate place nodes
and transition nodes for a single iteration of the execution process. The narrative events
associated with activated transition nodes are added to set A, which is returned when
the execution of the iteration ends. The set of narrative events returned by a single call
of function Execute-PetriNet-Step represents the parallel events that take place
during a certain point of the narrative. When the dramatization of these events ends,
function Execute-PetriNet-Step can be called again to obtain the next narrative
events for dramatization. If an empty set is returned, the narrative ends.

3 Lua is a well-known programming language developed at the Pontifical Catholic University of
Rio de Janeiro, Brazil (http://www.lua.org/).
4 https://love2d.org/.

http://www.lua.org/
https://love2d.org/

Plot Composition by Mapping Situation Calculus Schemas into Petri Net 71

Algorithm 1. Petri net execution algorithm.

1. function Execute-PetriNet-Step (PN, C)

2. A = Q;

3. for each node V in C do

4. if PN[V] is a PLACE then

5. N = number of edges in PN[V];

6. if N is greater than 0 then

7. if N is 1 then

8. S = first edge in PN[V];

9. else

10. S = get selected edge from PN[V] based on user interaction;
11. end

12. TA = get number of tokens available in parent nodes of PN[S];
13. TN = get indegree of PN[S];

14. if TA is greater or equal than TN then
15. Consume TN tokens from the parent nodes of PN[S];
16. Add S to A;

17. end

18. end

19. else if PN[V] is a TRANSITION then

20. for each edge E in PN[V] do

21. if PN[E] is a PLACE then

22. Add a token to place PN[E];

23. I, = Execute-PetriNet-Step (PN, {E});
24. for each node W in L do

25. Add W to A;

26. end

27. end

28. end

29. end

30. end

31. return A;

32. end

All the assets used for dramatization (e.g., character animations, background images,
and audio files) are defined in a library manually constructed for the domain of a specific
story. The context library is a 5-tuple L = (y, o, B, 8, 1), where:

e Y is a set that defines the actors of the story. Each actor has a name and a set of actions,
which are represented by animations in a sprite sheet format;

e o defines the locations of the story. Besides associating each location with a back-
ground image and a soundtrack, it also defines a set of waypoints where actors can be
placed during the scene composition process;

e f defines the characters’ dialogs (text and audio);

e § is a set that defines the interaction points of the story. Each interaction point is

associated with a set of interactive objects, which are represented by the classes of

sketches that can be used by users to interact at each interaction point. The interaction
points also include a set of instructions to guide the user during the interaction;

Tt establishes values for the variables present in the events of the Petri net.

In our implementation, the context library is defined in an XML file. The library
used for the trial by combat example is available at: http://www.icad.puc-rio.br/~logtell/
petri-net/context-trial-by-combat.xml.

During the dramatization of the story, our system generates 2D animations in real time
according to the actions performed by the virtual actors. An automatic virtual camera

http://www.icad.puc-rio.br/~logtell/petri-net/context-trial-by-combat.xml

72 E. S. de Lima et al.

maintains the active actors always centered in the image frame while they move around
the virtual world. When more than one actor is involved in the action, the camera will
target the center of the scene, which is calculated based on the positions of all characters
that are participating in the event.

User interaction occurs at or-fork nodes of the Petri net. When a node of this type
is activated, users are instructed by the virtual characters to interact by drawing specific
objects in the interaction app. The instructions are defined in the context library and
comprise a set of phases (text and audio), which are repeated until the user draws a valid
object (single user interaction mode) or during a certain time frame (voting interaction
mode). When the user’s choice is identified, the corresponding transition node is selected
to be activated (as indicated in line 10 of Algorithm 1). An example of a user interaction
moment for the trial by combat is illustrated in Fig. 3, showing the user’s decision
whether to help Gawain or Perceval, in the combat by drawing a spear or a sword (i.e.,
the weapons used by each character). A complete video demonstration of the trial by
combat example is available at:

https://www.youtube.com/watch?v=ql2TeBrhycc.

(b)

Fig. 3. User interaction moment in the trial by combat: (a) shows the dramatization system
instructing the user to draw a spear to assist Gawain or a sword to help Perceval; and (b) shows
that the user chose to draw a sword in the interaction app.

5 Concluding Remarks

We claim that our research thus far has already revealed the advantages of the com-
plementary use of situation calculus and Petri nets. The situation calculus model is
most convenient to start with, allowing to investigate through a planning algorithm the
appropriateness of the initial specification.

On the other hand, mapping the situation calculus schemas into the graphic structure
of a Petri net permits the identification of the points where the narrative process proceeds
along branching sequences, so as to recognize and explicitly annotate the occurrence

https://www.youtube.com/watch?v=qI2TeBrhycc.

Plot Composition by Mapping Situation Calculus Schemas into Petri Net 73

of forks, joins and loops. This kind of information is most helpful to guide interactive
plot generation/dramatization and is indispensable if dramatization is done by putting
together video-recorded sequences [18], given that scene transition often poses nontrivial
adjustment problems that cannot be left to be solved at runtime.

In addition, one must recall the relevance of this method to game design [16], where
multiple-ending and branching path storytelling mark increasingly advanced stages in
the interactivity spectrum, with remarkable examples, such as the Mass Effect trilogy
(BioWare, 2007-2012) and The Witcher trilogy (CD Projekt RED, 2007-2015). Due
to their predictability, handcrafted branching narrative structures are still dominant in
the game industry. However, we believe that more open approaches to interactive story-
telling, such as our method, can expand the boundaries of game narratives towards new
forms of interactive experiences. The situation calculus used at the specification stage
of our approach gracefully deals with unpredictability because the complete sequence
of outcomes is not explicit in the set of operators but can be easily verified.

Much work, however, remains to be done. As a proof of concept, we initiated this
project working upon an oversimplified example. Accordingly, we do not claim that the
current prototype can handle all problems associated with more complex applications and
intricate Petri net schemes. For instance, Petri net loops caused by iterative actions have
not been considered. Also, we could enrich the information kept at each Petri net node by
collecting user behavior data during a run and analyzing them to regulate the branching
options. Another essential future investigation is to address non-deterministic events, i.e.,
events that can have more than one outcome. Finally, we also plan to explore authoring
systems to support story writers, and to conduct comprehensive user satisfaction tests
involving writers (i.e., authors) and players (i.e., co-authors) in future works.

Acknowledgements. We want to thank CNPq (National Council for Scientific and Technological
Development) and FINEP (Funding Agency for Studies and Projects), which belong to the Ministry
of Science, Technology, and Innovation of Brazil, for the financial support.

References

1. Aalst, W.V.D.: Process mining. Commun. ACM 55(8), 76—-83 (2012). https://doi.org/10.1145/
2240236.2240257

2. Agostinelli, S., Maggi, EM., Marrella, A., Mecella, M.: Verifying petri net-based process
models using automated planning. In: Proceedings of the 2019 IEEE 23rd International Enter-
prise Distributed Object Computing Workshop (EDOCW), pp. 44-53. IEEE Press, New York
(2019). https://doi.org/10.1109/EDOCW.2019.00021

3. Balas, D., Brom, C., Abonyi, A., Gemrot, J.: Hierarchical petri nets for story plots featuring
virtual humans. In: Proceedings of the Fourth AAAI Conference on Artificial Intelligence
and Interactive Digital Entertainment (AIIDE’08), pp. 2-9. AAAI Press, Menlo Park (2008)

4. Brom, C., Abonyi, A.: Petri-nets for game plot. In: Proceedings of AISB Artificial Intelligence
and Simulation Behaviour Convention 3, pp. 6-13 (2006)

5. Ciarlini, A.E.M., Barbosa, S.D.J., Casanova, M.A., Furtado, A.L.: Event relations in plan-
based plot composition. Computers in Entertainment 7(4), 55 (2009). https://doi.org/10.1145/
1658866.1658874

https://doi.org/10.1145/2240236.2240257
https://doi.org/10.1109/EDOCW.2019.00021
https://doi.org/10.1145/1658866.1658874

74

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

E. S. de Lima et al.

Ciarlini, A.E.M., Casanova, M.A., Furtado, A.L., Veloso, P.A.S.: Modeling interactive sto-
rytelling genres as application domains. J. Intelligent Inf. Systems 35(3), 347-381 (2010).
https://doi.org/10.1007/s10844-009-0108-5

Ciarlini, A.E.M., Pozzer, C.T., Furtado, A.L., Feij6, B.: A logic-based tool for interactive
generation and dramatization of stories. In: Proceedings of the International Conference on
Advances in Computer Entertainment Technology (ACE 2005), pp. 133-140. ACM Press,
New York (2005). https://doi.org/10.1145/1178477.1178495

Eco, U.: The Open Work. Harvard University Press, Cambridge (1989)

El-Sattar, H. K.H.A.: A new framework for plot-based interactive storytelling generation. In:
Proceedings of the 2008 Fifth International Conference on Computer Graphics, Imaging and
Visualisation, pp. 317-322. IEEE Press, New York (2008). https://doi.org/10.1109/CGIV.200
8.50

Fernandes, A., Ciarlini, A.E.M., Furtado, A.L., Hinchey, M.G., Casanova, M.A., Breitman,
K.K.: Adding flexibility to workflows through incremental planning. Innovations Syst. Softw.
Eng. 3(4), 291-302 (2007). https://doi.org/10.1007/s11334-007-0035-y

Fikes, R.E., Nilsson, N.J.: A new approach to the application of theorem proving to problem
solving. Artif. Intell. 2(3—4), 189-208 (1971). https://doi.org/10.1016/0004-3702(71)90010-5
Gheno, F,, Lima, E.S.: Histéria viva: a sketch-based interactive storytelling system. In: Pro-
ceedings of the XX Brazilian Symposium on Computer Games and Digital Entertainment
(SBGames 2021), pp. 116-125. SBC, Porto Alegre (2021)

Hickmott, S., Rintanen, J., Thiebaux, S., White, L.: Planning via petri net unfolding. In:
Proceedings of the 20th International Joint Conference on Artificial intelligence, pp. 1904—
1911. AAAI Press, Menlo Park (2007)

Kindler, E., Rubin, V., Schifer, W.: Process mining and petri net synthesis. In: Eder, J.,
Dustdar, S. (eds.) BPM 2006. LNCS, vol. 4103, pp. 105-116. Springer, Heidelberg (2006).
https://doi.org/10.1007/11837862_12

Kowalski, R., Sadri, F.: Reconciling the event calculus with the situation calculus. J. Logic
Programming 31(1-3), 39-58 (1997)

Lebowitz, J., Klug, C.: Interactive Storytelling for Video Games: A Player-Centered Approach
to Creating Memorable Characters and Stories. Focal Press, Waltham (2011)

Lee, Y.-S., Cho, S.-B.: Dynamic quest plot generation using Petri net planning. In: Proceedings
of the Workshop at SIGGRAPH Asia (WASA 12), pp. 47-52. ACM Press, New York (2012).
https://doi.org/10.1145/2425296.2425304

de Lima, E.S., Feij6, B., Furtado, A.L.: Video-based interactive storytelling using real-time
video compositing techniques. Multimedia Tools Appl. 77(2), 2333-2357 (2017). https://doi.
org/10.1007/s11042-017-4423-5

Lima, E.S., Furtado, A.L., Feij6, B., Casanova, M. A.: A note on process modelling: combining
situation calculus with petri nets. Technical Report 01/2022, Department of Informatics,
PUC-RIO, Rio de Janeiro (2022). https://doi.org/10.17771/PUCRio.DImcc.59758

Lima, E.S., Gheno, E, Viseu, A.: Sketch-based interaction for planning-based interactive
storytelling. In: Proceedings of the XIX Brazilian Symposium on Computer Games and
Digital Entertainment (SBGames 2020), pp. 348-356. IEEE Press, New York (2020). https://
doi.org/10.1109/SBGames51465.2020.00029

Peterson, J.L.: Petri nets. ACM Comput. Surv. 9(3), 223-252 (1977). https://doi.org/10.1145/
356698.356702

Peterson, J.L.: Petri Net Theory and the Modeling of Systems. Prentice Hall, Upper Saddle
River (1981)

Riedl, M., Li, B., Ai, H., Ram, A.: Robust and authorable multiplayer storytelling experiences.
In: Proceedings of the Seventh AAAI Conference on Artificial Intelligence and Interactive
Digital Entertainment (AIIDE’11), pp. 189-194. AAAI Press, Menlo Park (2011)

https://doi.org/10.1007/s10844-009-0108-5
https://doi.org/10.1145/1178477.1178495
https://doi.org/10.1109/CGIV.2008.50
https://doi.org/10.1007/s11334-007-0035-y
https://doi.org/10.1016/0004-3702(71)90010-5
https://doi.org/10.1007/11837862_12
https://doi.org/10.1145/2425296.2425304
https://doi.org/10.1007/s11042-017-4423-5
https://doi.org/10.17771/PUCRio.DImcc.59758
https://doi.org/10.1109/SBGames51465.2020.00029
https://doi.org/10.1145/356698.356702

Plot Composition by Mapping Situation Calculus Schemas into Petri Net 75

24. Tan, X.: SCOPE: A situation calculus ontology of Petri Nets. In: Proceedings of 6th Interna-

25.

tional Conference of Formal Ontology in Information Systems, Toronto, Canada, pp. 227-240
(2010)
Ziparo, V.A.,Iocchi, L., Nardi, D., Palamara, P.F., Costelha, H.: Petri net plans - a formal model
for representation and execution of multi-robot plans. In: Proceedings of the 7th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2008), pp. 79-86
(2008)

	Plot Composition by Mapping Situation Calculus Schemas into Petri Net Representation
	1 Introduction
	2 Related Work
	3 From Situation Calculus to Petri Net Models
	3.1 The Basic Situation Calculus Model
	3.2 Deriving a Petri Net from a Situation Calculus Model

	4 Interactive Storytelling Application
	4.1 System Architecture
	4.2 Interactive Dramatization

	5 Concluding Remarks
	References

