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Abstract — Interactive storytelling in games is a powerful 

tool to create immersive and engaging experiences for players. 

In this context, the adherence to a predefined story arc, coupled 

with adaptation to individual personality traits, are essential to 

ensure, at the same time, thematic consistency and player 

involvement in story-driven games. One promising way to meet 

such requirements is to treat plot composition as an interactive 

plan-generation problem, and develop a method whereby 

branching quests can be adequately handled and adapted in 

real-time. A key feature of the method is the ability to, after 

evaluating the effects of player decisions, perform the 

adaptations needed to keep the current story arc in close 

approximation to the predefined story arc. The underlying 

player preference model uses a set of artificial neural networks 

trained, on the basis of the players’ responses to a brief Big Five 

personality test, to classify their preferences for specific quest 

decisions. This paper presents our quest adaptation method and 

summarizes the results we obtained through the application of 

our method in a fully implemented game prototype. 

Keywords—Quest Adaptation, Automated Planning, Dramatic 

Structures, Branching Narratives, Interactive Storytelling 

I. INTRODUCTION 

The design of interactive narratives for games is a 
challenging task, wherein the adoption of a well-configured 
story arc is a crucial step to ensure that the players will be led 
through dramatically engaging sequences of events. In the 
past, even the compatibility of narrative with the effects of 
interaction has been questioned due to the lack of control 
allegedly suffered by authors over narrative structures in 
interactive media [1][2]. Today, however, interactive 
storytelling in videogames is a very common practice and 
many recent games include quests with branching storylines, 
such as Mass Effect 2 (BioWare, 2010), The Witcher 3: Wild 
Hunt (CD Projekt RED, 2015), and Cyberpunk 2077 (2020).  

When designing interactive narratives for games, one 
major problem is then how to achieve branching narratives in 
which all storylines follow a dramatic structure consistent 
with a predefined story arc. The problem involves the mutual 
dependence of the players’ actions, affected in complex ways 
by the players’ possible narrative choices.  

Although story arcs were originally proposed as a way to 
represent the structure of a dramatic linear work, such as a 
play or film, the new entertainment media has been applying 
classical dramatic structures for non-linear interactive media, 
such as videogames [3][4]. Considering that non-linearity can 
be achieved by simply allowing players to customize their 
linear experiences during a playthrough, traditional narrative 
structures can still be applied to non-linear branching quests. 

In this way, one could manually plan all possible storylines of 
a branching quest to follow an intended narrative structure, but 
that still does not account for the freedom that players usually 
have while performing quests. Most games allow players to 
explore the world (where they can meet new characters, fight 
enemies, find new items, etc.) while performing the tasks of a 
quest, and these detours can directly affect the tension of the 
narrative that is experienced by the player, thus breaking the 
story arc that was manually drawn for the quest. 

In this context, artificial intelligence methods can provide 
ways to dynamically generate or adapt storylines according to 
a user-specified story arc. In previous works, we developed 
prototypes to generate quests for games employing automated 
planning [5], player modeling [7][8]. With these techniques, 
we were able to obtain an encouraging level of variety in plot 
composition with high flexibility to support the richness of the 
mutable interactive virtual worlds of games. We now propose 
to invest on a strategy that is based on the adaptation of 
already existing branching quests. Instead of generating quests 
from scratch, an adaptation strategy starts with a sound and 
coherent quest and modifies its events according to author-
specified requirements and/or player preferences. 

In this paper, we propose a new quest adaptation method 
to apply a dramatic structure to branching quests in real-time. 
By relying on the dynamic structure of quests, which are 
specified as planning problems, our method can adapt the plot 
and introduce new events into quests that will lead the player 
to situations that sufficiently increase or decrease the dramatic 
tension of the narrative so as to achieve the approximation of 
the current story arc to the expected story arc. 

The paper is organized as follows. Section II presents 
related work. Section III introduces our quest adaptation 
method. Section IV describes its application by way of a fully 
implemented game prototype and presents the results of an 
evaluation study. Section V offers concluding remarks. 

II. RELATED WORK 

There are several works on quest generation in the 
literature, such as the framework presented by Sullivan et al. 
[9], which uses a rule-based system to dynamically generate 
the structure of quests according to a library of existing quests. 
Another recent framework for quest generation was proposed 
by Ammanabrolu et al. [10], who present a method to generate 
cooking quests for text-adventure games using Markov chains 
and a neural language model to make the recipes. A similar 
approach is explored by Chongmesuk and Kotrajaras [11], but 
focusing on the analysis of the alternative paths that can be 
generated for a given type of quest. A more dynamic solution 
is presented by Lima et al. [5], who propose a method to 
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generate quests based on hierarchical task decomposition and 
planning under non-determinism. In a recent work, Lima et al. 
[7] also proposed a quest generation method based on genetic 
algorithms and automated planning.  

Although both quest generation and adaptation tasks can 
produce new plots, most of the adaptation methods rely on 
existing quest plots and use player modeling techniques to 
infer player preferences. As this paper concerns quest 
adaptation, we shall focus our analyses of related work on 
previous works that are centered on this subject. In this 
context, Li and Riedl [12][13] present an offline refinement 
search algorithm based on partial order planning that 
iteratively modifies a pre-existing storyline (deleting and 
inserting quests and events) until it matches the preferences of 
a target player. The method we propose here is also based on 
planning, but instead of adapting the storyline by way of an 
offline procedure, it performs all the adaptations in real-time. 
Li and Riedl’s technique is limited to previously known 
player’s preferences, and does not account for preference 
changes and player actions occurring during the game. In 
contrast, our method relies on the dramatic structure of the 
narrative, which is directly affected by in-game player actions. 

A framework to adapt game narratives according to 
player’s emotions is presented by Freilão [14]. However, all 
the adaptations are predetermined by the author and no 
narrative generation method is employed in the process. A 
more complex emotion-based for narrative adaptation method 
is explored by Hernandez et al. [15][16], who present a system 
called PACE, which lets the author specify the emotions that 
players should experience during a narrative-based game. 
Their system selects narrative segments to be presented to the 
player so as to provoke emotional reactions that are close to 
the emotions the author intended. Despite allowing authors to 
specify the emotions that players will experience in narrative-
based games, PACE does not provide the level of freedom 
offered by games that are more open to player interactions, 
such as role-playing games (RPGs). To meet this requirement, 
our method adapts the plot of quests according to the dramatic 
structure of the narrative, which is represented as a story arc 
that is updated in response to all in-game player actions.  

A similar approach is explored by Zook et al. [17], who 
present a skill-based mission generation system that uses 
player modeling and genetic algorithms to create the game 
missions. Their system uses the player model to predict a 
player’s performance in response to the mission’s challenges 
and then compares the predicted performance to the author’s 
desired performance. The concept of a target player 
performance curve is similar to how we define a desired story 
arc in the present work, but these two concepts have different 
meanings: while player performance is related to the difficulty 
of the game, the story arc is related to the dramatic tension of 
the narrative. In addition, the system of Zook et al. does not 
perform plot adaptations while the player is progressing 
through a mission. In contrast, our method adapts the plot of 
quests in real-time to compensate for player actions that may 
deviate the current story arc from the author’s intended arc. 

III. ADAPTIVE BRANCHING QUESTS 

A. The Structure of Branching Quests 

In games, a quest represents a journey in which the 
protagonist (controlled by the player) performs tasks in order 
to overcome challenges and achieve meaningful goals [18]. 
Accordingly, in this paper, we define a quest as a set of tasks 

(e.g. killing enemies, escorting and saving characters, 
collecting and delivering items) which the player must 
accomplish. The success in achieving these tasks or the 
different decisions made by players while performing those 
tasks will lead them to experience a unique and customized 
plot. In the present article, we call this unique plot a storyline.  

In this work, we use the same definition of quests used in 
[8], where quests are modeled as a tree structure named 
branching quest (Ψ) (Fig. 1), that is: 

• The root node represents the initial state of the 
quest (𝑆0); 

• Internal nodes define intermediate goal states 
(𝐺𝑖) and intermediate states (𝑆𝑖);  

• Leaf nodes define final goals and final states for 
the quest; 

• A branch (𝐸𝑖) is composed of a pair of nodes (𝑆𝑗 , 

𝐺𝑖) and an edge (𝑆𝑗  → 𝐺𝑖), 𝑗 ≺ 𝑖, where the edge 

comprises a sequence of events to achieve the 
intermediate or final goal 𝐺𝑖 (and state 𝑆𝑖) from 
the initial state or the intermediate state that 
precedes 𝑆𝑖  (i.e., 𝑆𝑗 ). For example, 𝐸4  is 

composed of (𝑆1, 𝐺4) and (𝑆1 → 𝐺4). 

 

Fig. 1. Tree structure of a branching quest. 

Each branch of the quest tree is encoded as a planning 
problem:  

𝐸𝑖 = (𝐹, 𝑆𝑗 , 𝐺𝑖 , 𝑂), 𝑗 ≺ 𝑖, 

where 𝐹 is a set of atomic formulas (or atoms, for short), 𝑂 is 
a set of planning operators, 𝑆𝑗 ⊆ 𝐹 is the initial state of 𝐸𝑖, and 

𝐺𝑖 ⊆ 𝐹 is the goal state in the form of a ground literal. A literal 
is an atom 𝑓  or the negation of an atom (¬𝑓) . In this 
definition, a planning operator 𝑜 ∈ 𝑂 is denoted by: 

𝑜 = (𝑛𝑎𝑚𝑒(𝑜), 𝑝𝑟𝑒𝑐𝑜𝑛𝑑(𝑜), 𝑒𝑓𝑓𝑒𝑐𝑡(𝑜), 𝑡𝑒𝑛𝑠𝑖𝑜𝑛(𝑜)) 

where 𝑛𝑎𝑚𝑒(𝑜) is the name of the operator in the form of an 
atom 𝑜𝑝(𝑥1, 𝑥2, … , 𝑥𝑘), 𝑝𝑟𝑒𝑐𝑜𝑛𝑑(𝑜) and 𝑒𝑓𝑓𝑒𝑐𝑡(𝑜) are sets 
of literals that define the preconditions and the effects of 𝑜. A 
detailed explanation of these basic terms used in automated 
planning can be found in our previous works [6][7]. In contrast 
with the definition used in [8], we extend planning operators 
with the component 𝑡𝑒𝑛𝑠𝑖𝑜𝑛(𝑜) , which establishes how 𝑜 
affects the overall tension of the quest’s narrative, which can 

be increased (+), decreased (−), or maintained (=). As an 
example, the first branch 𝐸1  of quest Ψ1  is the planning 
problem 𝐸𝑖 = (𝐹, 𝑆0, 𝐺1 , 𝑂), where 𝑂 = {𝑜1, 𝑜2, 𝑜3}, and 

𝑛𝑎𝑚𝑒(𝑜1) = go(CH,PL1,PL2), 

𝑛𝑎𝑚𝑒(𝑜2) = see-starving(CH1,CH2,PL), 
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𝑛𝑎𝑚𝑒(𝑜3) = request-another(CH1,CH2,CH3,IT,PL). 

The variables in these operators are characters (CH), places 
(PL) and items (IT). As a complete example of operator, we 
present request-another: 

o3:  

  name: request-another(CH1, CH2, CH3, IT, PL) 

  precond: character(CH1), character(CH2),  

    character(CH3),item(IT),place(PL),  

    at(CH1,PL),at(CH2, PL), alive(CH1),  

           alive(CH2), healthy(CH2),  

           hero(CH2), know-need(CH1, CH3, IT) 

  effect: know-request(CH2, CH1, IT) 

  tension: + 
 

An example of goal is: 
 

G1: know-request(james, elizabeth, food1),  

    at(james, store) 
 

By solving the planning problem of a branch using a 
planning algorithm, a linear sequence of plot events is 
generated from the initial state 𝑆𝑗 . In our implementation, we 

used the HSP2 heuristic search planner of Bonet and Geffner 
[19], which is compatible with our STRIPS-based formalism. 

The plot of each branch is a sequence of events Ψ𝑗E𝑘 =
{𝑒1, 𝑒2, … , 𝑒𝑛}. Each event 𝑒𝑖 is a pair (𝑒𝑣𝑖 , 𝑠𝑡𝑖), where 𝑒𝑣𝑖 is a 
ground literal that describes the event, and 𝑠𝑡𝑖  is a set of 
ground literals that describe the world state that holds after the 
event 𝑒𝑖. In the above example, the generated plot for Ψ1E1 is 
{𝑒1, 𝑒2, 𝑒3}, where events are highlighted in bold and new 
ground literals added to the state by the current event operator 
are highlighted with underline:1   

Ψ1E1: 
   𝑒1: 

𝑒𝑣1=see-starving(elizabeth, karen,  

    shelter),  

𝑠𝑡1={healthy(james), healthy (elizabeth),  

    open(shelter), open(store),  

    at(james, shelter), 

    at(elizabeth, shelter),  

    at(karen, shelter), starving(karen),  

    know-need(elizabeth, karen, food1)} 

   𝑒2: 
𝑒𝑣2=request-another(elizabeth, james,  

    food1, shelter),  

𝑠𝑡2={healthy(james), healthy (elizabeth),  

    open(shelter), open(store), 

    at(james, shelter), 

    at(elizabeth, shelter),  

    at(karen, shelter), starving(karen),  

    know-need(elizabeth, karen, food1), 

    know-request(james, elizabeth, food1)} 

   𝑒3: 
𝑒𝑣3=go(james, shelter, store),  

𝑠𝑡3={healthy(james), healthy (elizabeth),  

    open(shelter), open(store), 

    at(elizabeth, shelter),  

    at(karen, shelter), starving(karen),  

    know-need(elizabeth, karen, food1), 

    know-request(james, elizabeth, food1), 

    at(james, store)} 

 
1 Static literals (i.e., literals that never change in this example), such 

as character(CH), alive(CH), and path(PL1, PL2), 

were omitted from the state descriptions. 

This simple plot starts with the character Elizabeth 
watching her daughter Karen starving. Then, Elizabeth 
requests food to James (the character controlled by the player), 
who goes to the store looking for the requested item. 

When the planner solves the planning problem of a branch, 
the resulting plan defines the branch’s storyline. In addition, 
the final state of this plan is used to establish the intermediate 
state of the branch’s child node. This child node can then be 
used as the initial state to continue the story towards the goals 
of successor branches. 

Fig. 2 shows an example of branching quest (Ψ1) designed 
using our formalism. Considering that the plot of Ψ1E1 was 
shown in the previous example, the plot for the remaining 
branches 𝐸𝑖  of Ψ1  are (for simplicity, we only present the 

literals 𝑒𝑣𝑖 that describe the events of each branch): 

Ψ1E2 = ask(james, michael, food1, store). 
 

Ψ1E3 = steal(james, michael, food1, store), 
go(james, store, shelter), deliver(james, 

elizabeth, food1, shelter), feed(elizabeth, 

karen, food1, shelter). 
 

Ψ1E4 = request-payment(michael, james, store), 
pay(james, michael, store), give(michael, 

james, food1, store), go(james, store, 

shelter), deliver(james, elizabeth, food1, 

shelter), feed(elizabeth, karen, food1, 

shelter). 
 

Ψ1E5 = request-kill(michael, james, 
villagemonster1, store), go(james, store, 

village), kill(james, villagemonster1, 

oldgun, village), go(james, village, store), 

report-kill(james, michael, villagemonster1, 

store), give(michael, james, food1, store), 

go(james, store, shelter), deliver(james, 

elizabeth, food1, shelter), feed(elizabeth, 

karen, food1, shelter). 
 

Ψ1E6 = request(michael, james, 
hospitalstoragekey, store), go(james, store, 

hospital), steal(james, steven, 

hospitalstoragekey, hospital), go(james, 

hospital, store), give(james, michael, 

hospitalstoragekey, store), give(michael, 

james, food1, store), go(james, store, 

shelter), deliver(james, elizabeth, food1,  

shelter), feed(elizabeth, karen, food1, 

shelter). 

 

The tree structure of a branching quest can be manually 
created by a game designer or automatically generated by 
procedural content generation algorithms. In the former case, 
a human game designer is responsible for defining the logical 
description of the initial state for the quest (the game world 
state in which the quest can start), as well as for establishing 
intermediate and final goals for the different branches of the 
quest. On the other hand, when quests are created by 
procedural content generation techniques, the entire structure 
of the quest tree is generated by an algorithm, including the 
definition of the initial state and goals (as described in a 
previous work of our group [8]). In both cases, the planning 
problem of the branches is solved by a planner in real-time to 
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generate the final storyline as the player progresses through 
the quest during the game. This dynamic structure provides an 
opportunity for the development of new algorithms that can 
adapt the plot of quests in real time according to variables that 
can only be instantiated during the game, such as individual 
player preferences, behaviors, or the dramatic structure of the 
narrative, which can be directly affected by player actions. 

 

Fig. 2. Tree structure of branching quest Ψ1. 

B. The Representation of Story Arcs 

In classical non-interactive media (e.g. literature, theatre, 
novels), the dramatic structure of a work is implied by the 
form of its narrative and the dramatic impact of its events. In 
the context of our work, the concept of story arcs stands out as 
a normative way to represent narrative structures. A popular 
story arc is the three-act structure (Fig. 3a), which is 
commonly used by the film industry and is divided into Setup 
(1/4 of the story time), Confrontation (2/4 of the story time), 
and Resolution (1/4 or less of the story time). We can use this 
story arc or any other tension function (see [20] for an 
overview on story arcs). In the present work, time is discrete. 
Moreover, we linearize the tension function by parts and 
assign values to the plot points using unit increments (we 
propose to call this function a piecewise linear story arc). This 
is a simple way of having a flexible, standard story arc to be 
used as the desired arc for the whole story. Fig. 3b is the 
piecewise linear three-act story arc used in our experiments. 

Although some modern literary scholars tend to be hostile 
to norms of structure [21], the new entertainment media, such 
as videogames, have special needs and challenges as they 
engage players in short narrative episodes (quests and side-
quests) with strong focus on the interactive aspects of the 
experience. In this case, normative notions of dramatic 
structure are very helpful to increase player engagement.  

We represent the piecewise linear story arc of a plot 𝑑 as a 

sequence of symbols 𝑑𝑎𝑟𝑐
𝑠𝑦𝑚

= {𝑠1, 𝑠2, … , 𝑠𝑛}, where each 𝑠𝑖 
can be: “+” to indicate rise; or “-” to indicate fall; or “=” to 
indicate that the tension level is maintained. The number of 
symbols in the sequence represents the discretized time axis. 
For example, the three-act story arc 𝑑 illustrated in Fig. 3b can 

be expressed as: 𝑑𝑎𝑟𝑐
𝑠𝑦𝑚

= {+, +, +, −}. 

The symbolic representation of a story arc can also be 
converted into a numeric representation 𝑑𝑎𝑟𝑐

𝑛𝑢𝑚 =
{𝑣1, 𝑣2, … , 𝑣𝑛}, where each 𝑣𝑖 of 𝑑𝑎𝑟𝑐

𝑠𝑦𝑚
 is a number indicating 

 
2 We used the following tension effects of the operators: go: =, 
see-starving: +, request-another: +, ask:+, steal:+, 

the current tension value in the vertical axis of the story arc. 
We propose to start the function with zero, and add 1, subtract 

1 or do nothing if the symbol is “+”, “−”, or “=” respectively. 

For example, the symbolic story arc 𝑑𝑎𝑟𝑐
𝑠𝑦𝑚

= {+, +, +, −} 
yields to 𝑑𝑎𝑟𝑐

𝑛𝑢𝑚 = {1, 2, 3, 2}.  

 

Fig. 3. Examples of story arcs: (a) the well-known three-act story arc; and 

(b) a piecewise linear three-act story arc. 

The storyline generated for a branching quest can also be 
expressed in this notation. For example, the story arc for a 
storyline created by a player 𝑃1 traversing the tree structure of 
branching quest Ψ1 (as in Section III – A), following branches 
𝐸1 + 𝐸2 + 𝐸6, can be rendered in symbolic notation as:2  

𝑃1Ψ1𝑎𝑟𝑐
𝑠𝑦𝑚 = {+, +, =, +, +, =, +, =, −, −, =, −, −},  

and converted to its numeric representation:  

𝑃1Ψ1𝑎𝑟𝑐
𝑛𝑢𝑚 = {1, 2, 2, 3, 4, 4, 5, 5, 4, 3, 3, 2, 1}, 

Considering that story arcs can have different time and 
tension scales, a normalization procedure to scale them to 
standard intervals is needed for further comparisons. In our 
experiments, time is scaled to the interval [1, 10], and tension 
to the interval [0, 1]. The normalization formula to calculate 
the scaled story arc of a plot 𝑝  is the same used in [8], 
reproduced below to help understanding the current extension: 

∀𝑗  ∈ {1, … , 10} 𝑝𝑎𝑟𝑐𝑗
𝑠𝑐𝑎𝑙𝑒𝑑 

=

𝑝𝑎𝑟𝑐
𝑛𝑢𝑚

⌈
𝑗−1
10

(𝑝𝑎𝑟𝑐
𝑛𝑢𝑚̅̅ ̅̅ ̅̅ ̅̅ −1)⌉+1

− min(𝑝𝑎𝑟𝑐
𝑛𝑢𝑚)

max(𝑝𝑎𝑟𝑐
𝑛𝑢𝑚) − min(𝑝𝑎𝑟𝑐

𝑛𝑢𝑚)
 

(1) 

where 𝑝𝑎𝑟𝑐
𝑛𝑢𝑚̅̅ ̅̅ ̅̅ ̅  denotes the length of 𝑝𝑎𝑟𝑐

𝑛𝑢𝑚 , and min(𝑝)  and 
max(𝑝) are functions that return the minimum and maximum 
tension values of 𝑝 . For example, the three-act story arc 
𝑑𝑎𝑟𝑐

𝑛𝑢𝑚 = {1, 2, 3, 2} and the 𝑃1Ψ1𝑎𝑟𝑐
𝑛𝑢𝑚  above are respectively 

scaled to: 

𝑑𝑎𝑟𝑐
𝑠𝑐𝑎𝑙𝑒𝑑 = {0.3, 0.3, 0.6, 0.6, 0.6, 1.0, 1.0, 0.6, 0.6, 0.6} 

𝑃1Ψ1𝑎𝑟𝑐
𝑠𝑐𝑎𝑙𝑒𝑑 = {0.2, 0.4, 0.6, 0.8, 0.8, 1.0, 0.8, 0.6, 0.4, 0.2} 

With two story arcs scaled to the same intervals, we can 
calculate their differences. The direct difference between two 
points at index 𝑖 in two scaled story arcs (𝑥 and 𝑦) is given by: 

deliver:-, feed:-, request-payment:+, pay:-, give:-, 

request-kill:+, kill:-, report-kill:-, request:+. 

time

Climax

introduction

rising action

falling action

Incident

Plot Point

Setup Confrontation Resolution

crisis

tension

tension

s1 s2 s3 s4

time
Setup Confrontation Resolution

1

2

3

(a)

(b)
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𝑑𝑖𝑓𝑓(𝑥𝑖 , 𝑦𝑖) = (𝑥𝑖 − 𝑦𝑖)
2 (2) 

And the difference between two story arcs (𝑝 and 𝑑) is: 

𝑎𝑟𝑐𝑑𝑖𝑓𝑓(𝑝, 𝑑) =
1

𝑛
∑ 𝑑𝑖𝑓𝑓(𝑝𝑎𝑟𝑐𝑖

𝑠𝑐𝑎𝑙𝑒𝑑 , 𝑑𝑎𝑟𝑐𝑖
𝑠𝑐𝑎𝑙𝑒𝑑)

𝑛

𝑖=1

 (3) 

where 𝑛 is the maximum value used in the scaled time interval 
of the story arcs (in our experiments, 𝑛 = 0). 

Although the mathematical representation of story arcs 
allows direct comparisons between two story arcs, applying a 
dramatic structure to interactive and non-linear narratives is a 
challenging task, giving the fact that traditional narrative 
structures are inherently linear and are not prepared to handle 
the freedom that videogames give to players. 

The proposed method to apply a dramatic structure to a 
branching quest involves the adaptation of the quest’s plot in 
real time to approximate the current story arc to an expected 
story arc. Such approximation requires the full estimation of 
the current story arc, which must take into account past and 
future player decisions. Since different storylines can occur 
during a branching quest, a method to identify the player’s 
preferences for future narrative events is needed to allow the 
system to predict the most likely storyline that will occur. 

C. Predicting Player’s Decisions in Branching Quests 

In order to identify the path that a player will follow in a 
branching quest, we adopted the method proposed by Lima et 

al. [22][23], which was originally designed to identify the 
users’ preferences for narrative events using machine learning 
and the Big Five personality model in an interactive 
storytelling system. In the present work, we extended and 
applied the model proposed by Lima et al. [22] in a game 
context. To assess the personality of players, we directly 
integrated the BFI-10 [24] questionnaire into our game. So, 
before starting the game, players must answer the 10 questions 
of the BFI-10, which will measure their personalities. 
Although less invasive solutions to integrate the BFI-10 
questionnaire into games exist, such as the use of story-related 
interactive scenes [6], we opted for this simpler solution, 
since, although assessing players’ personalities is part of this 
work, it is not its main focus. 

For the preference model, we used a set of artificial neural 
networks trained to classify player preferences for specific 
quest decisions. As illustrated in Fig. 4, each artificial neural 
network is trained to identify the predilections of players for 
the possible choices of a branching node in the tree structure 
of a quest. The neural networks use a single hidden layer and 
are trained by a standard back-propagation learning algorithm 
using a sigmoidal activation function. The input for all neural 
networks is defined by the five scores of the Big Five factors 
(Openness, Conscientiousness, Extraversion, Agreeableness, 
and Neuroticism), which are obtained through the BFI-10 
questionnaire. Their output is defined by the possible choices 
available for their respective branching nodes. 

The dataset used to train the artificial neural networks of 
our preference model was collected from game sessions that 
occurred as part of a user evaluation test conducted for a 
previous work on the procedural generation of branching 
quests [8]. A total of 38 players played a prototype game with 
the branching quests used for the present work. During the 
game sessions, players had their personalities assessed 
through the BFI-10 questionnaire and their decisions on each 

branching node were automatically registered by the game. 
The artificial neural networks of the preference model were 
then trained and evaluated according to a 10-fold cross-
validation strategy (using the methodology described by Lima 

et al. [22]). The results indicate that our preference model has 
an average accuracy of 87.2%. 

 

Fig. 4. Structure of neural networks used in the preferece model: 𝐹⃗ is the 

player personality vector (five values representing the scores of the Big 

Five factors), and 𝑏𝑖 represents the number of choices in the i-th branching 

point of the quest tree. 

The preference model allows the system to predict future 
player’s decisions in branching nodes at any time during the 
game. With this information, the system can estimate a 
possible final plot for the branching quest.  

D. The Dynamic Story Arcs of Interactive Branching Quests 

The current story arc for a branching quest is automatically 
calculated as the player progresses through the events of the 
quest in real time. By combining past events and player 
actions with the events that are anticipated for the player 
(predicted by preference model), the current story arc can be 
dynamically estimated in response to the actions of the player.  

Given that a quest plot is an indexed sequence of events 
Ψ𝑗E𝑘 = {𝑒1, 𝑒2, … , 𝑒𝑛},  the player’s progress can be 

determined by the current quest event 𝑒π, where 𝜋 is the index 
of the current event. The quest starts with the event 𝑒1 (𝜋 =
1) and ends when the player completes 𝑒𝑛 (𝜋 = 𝑛). As both 
symbolic and numeric representations of story arcs are created 
according to a quest plot, the index 𝜋 can also be used to mark 
the progress of the player in the story arc of the quest.   

The current story arc is updated in response to player 
actions (e.g., encountering and fighting enemies, finding and 
using items, interacting with non-player characters) and plot 
events from other active quests. In both cases, the symbolic 
representation of the story arc is updated by adding the tension 
symbols of the new actions/events at index 𝜋 according to the 
tension symbol associated with the operator related to the 
action/event, which is defined in the elements of the planning 
problem (see Section III – A). 

For example, considering a player 𝑃1 that has just started 
quest Ψ1 (presented in Section III – A) and assuming that the 
preference model indicates that this player will follow 
branches 𝐸1 + 𝐸2 + 𝐸5 , the current story arc for 𝑃1  and Ψ1 
can be expressed in the symbolic notation as:   

Neural Network 1

input output 
(2 choices)
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id

d
e

n
 la

ye
r

Branching Quest 

Neural Network 2

input

h
id

d
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output 
(3 choices)
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𝑃1Ψ1𝑎𝑟𝑐
𝑠𝑦𝑚 = {+, +, =, +, +, =, +, = , −, −, =, −, −}, 

where the symbol with underbar (+) indicates the current 
position of the player in the story arc according to index 𝜋. 

Assuming that, after starting quest Ψ1, the player performs 
the first two events as expected in the quest plot (watches 
karen starve and receives the request of food from 

elizabeth in the shelter). However, when going to the 
store (the 3rd event of the quest), the player meets an enemy. 
The enemy encounter is not part of the quest plot, but it will 
affect the narrative tension. Therefore, the tension produced 
by the encounter event is inserted in the story arc at index 𝜋: 

𝑃1Ψ1𝑎𝑟𝑐
𝑠𝑦𝑚 = {+, +, +, =, +, +, =, +, = , −, −, =, −, −}, 

where the overbar (+) indicates the inserted symbol. 

The narrative tension of the quest can also be affected by 
plot events from other active quests. For example, after killing 
the villagemonster1 in the 7th event of the quest, the player 

may decide to interact with some character needing help in the 
village to start a new side-quest Ψ2  (e.g. this character 
requests the player to find a syringe). Since the plot of Ψ2 has: 

request-item(david, james, syringe, village), 

go(james, village, hospital), get(james, 

syringe, hospital), go(james, hospital, 

village),deliver(james,david,syringe,village),  

and assuming that the player 𝑃1 completes all the events of Ψ2 
before proceeding to the next objective of Ψ1, the story arc of 
𝑃1Ψ1  will be updated and the tension variation values 

produced by the events of Ψ2 are inserted at index 𝜋:  

𝑃1Ψ1𝑎𝑟𝑐
𝑠𝑦𝑚 = {+, +, +, =, +, +, +, =, +, =, −, =, +, = , −, −, =, −, −}, 

By calculating and updating the story arc of a branching 
quest according to player actions, the system can estimate the 
current story arc of a quest at any time during the game.  

E. Adapting the Story Arcs of Branching Quests 

The proposed method to adapt the plot of a branching 
quest to approximate the current story arc to an expected story 
arc relies on the dynamic structure of the planning problems 
used to define the quest’s branches, which are solved by a 
planner in real time to generate the final storyline for the quest. 
By modifying the world state, current goals, and performing 
replanning procedures, the system can adapt the plot and 
introduce new events into the quest, leading the player to 
situations that sufficiently increase or decrease the dramatic 
tension of the narrative to achieve the approximation of the 
current story arc to the expected story arc. 

The plot adaptions that can be performed by the system are 
defined in the adaptation library, which is manually 
constructed by a human author according to the type of the 
game’s possible interactions and events. The adaptation 
library is a set 𝐿 = {𝑚1, 𝑚2, … , 𝑚𝑛}, where each member of 
𝐿 is a 5-tuple 𝑚𝑖 = (𝛾𝑖 , 𝛼𝑖 , 𝛽𝑖 , 𝛿𝑖 , 𝜃𝑖). The elements of 𝑚𝑖 are: 

• 𝛾𝑖 defines the modification effect of 𝑚𝑖, which 
can increase or decrease the dramatic tension of 
the narrative; 

• 𝛼𝑖  is a set of literals that establish event 
preconditions (i.e., the narrative events that 
enable 𝑚𝑖  to occur). For example, 𝛼𝑖 =
{go(CH, PL1, PL2)} defines that 𝑚𝑖 can only 

be applied if the current narrative event is a go 

event. In this case, since CH, PL1, and PL2 are 
variable terms, any ground terms are accepted for 
the narrative event. But if 𝛼𝑖 = {deliver(CH1, 
elizabeth, IT, PL), deliver(CH1, 

david, IT, PL)}, then 𝑚𝑖 can only occur if 
the current event is a deliver event where an 

item IT (any item) is being delivered by a 

character (any character) to elizabeth or 

david (ground terms). When 𝛼𝑖 = ∅, there are 
no event preconditions and 𝑚𝑖 can be applied in 
sequence to any event of the quest; 

• 𝛽𝑖  is a set of literals defining state preconditions 
(i.e., literals that must hold in the current world 
state for 𝑚𝑖  to be applied). For example, 𝛽𝑖 =
{ know-request(james, CH2, IT) } 

establishes that 𝑚𝑖  can only occur if james 
knows that he has been requested by a character 
CH2 to find and deliver an item IT. Since know-

request is added to the world state as an effect 

of the request operator and removed from the 

world state as an effect of the deliver operator, 

𝑚𝑖  can occur at any moment while james is 
searching or delivering IT. Function symbols 
can also be used to represent terms. For example, 
𝛽𝑖 = { at(enemy(EN), player-

location(PL)) }  defines that 𝑚𝑖  can only 
occur if there is an enemy EN (any enemy) at the 

current player location PL. When 𝛽𝑖 = ∅, there 
are no state preconditions; 

• 𝛿𝑖  is a set of literals that define state 
modifications (i.e., literals to be added or 
removed from the current world state where 𝑚𝑖 
is being applied). For example, considering 𝛼𝑖 =
{go(CH, PL1, PL2)}, the state modifications 

𝛿𝑖 = { ¬open(PL2), at(key(PL2, KE), 

PL1)} establish that the place PL2 will not be 
open (the negation symbol ¬ represents the 
deletion of the literal from the current world 
state) and a key KE for PL2 will be added to the 

location PL1. The values of the variable terms of 

𝛿𝑖 are established according to the terms of 𝛼𝑖 , 
which are defined according to the ground terms 
of the go event where 𝑚𝑖 is being applied;  

• 𝜃𝑖  is a set of literals that define goal 
modifications (i.e., literals to be added or 
removed from a goal state that is created using as 
basis the world state holding after the completion 
of the current event where 𝑚𝑖 is being applied). 
For example, 𝜃𝑖 = { open(PL2) }  defines 

open(PL2) as an extra goal to be accomplished 
by the player before he resumes the original 
events of the quest. As will be explained below, 
these goals are used by the planner to generate 
and introduce new events into the quest plot. 

In our implementation, six plot adaptions were tested. 
Three of them were designed to increase the dramatic tension 
of the narrative: (1) spawn an enemy at the current player 
location (forcing the player to fight and kill the enemy); (2) 
block the player passage (forcing him to find a key or another 
item to open the passage); and (3) make the player lose or 
break an item that is being delivered (inducing the player to 
find another item). The other three plot adaptions were 
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designed to decrease the tension: (1) spawn an item that the 
player needs at the current player location (making the player 
find the item easily); (2) spawn an assistant character at the 
current player location to kill an enemy (helping the player to 
eliminate the threat); and (3) spawn an assistant character at 
the current player location to give the player an item that the 
player needs (avoiding the item search process). 

For example, the plot adaptation to increase the narrative 
tension by blocking the player passage is represented in the 
adaptation library as: 

𝑚1 = { 𝛾1 = 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒, 𝛼1 = {go(CH, PL1, PL2)}, 𝛽1 =
∅, 𝛿1 = {¬open(PL2), at(key(PL2, KE), PL1)}, 
𝜃1 = {open(PL2), know-was-closed(CH, PL1)}}. 

An example of plot adaptation to decrease the narrative 
tension involves spawning an item that the player needs at the 
current player location, shown in the adaptation library as: 

𝑚2 = {𝛾2 = 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒, 𝛼2 = ∅, 𝛽2 = {know-request( 
james, CH2, IT)}, 𝛿2 = {at(IT, player-location( 
PL))}, 𝜃2 = {has(james, IT)}} . 

Our quest adaptation algorithm is associated with a quest 
instance, and maintains the symbolic representation of the 
current story arc for the quest, which is initially estimated by 
the preference model (as described in Section III – C). Every 
time the player performs a relevant action (i.e., an action that 
can affect the narrative tension), the algorithm compares the 
current tension values of the current story arc and the desired 
story arc to decide whether a plot adaptation is necessary or 
not. A threshold value Ω  defines the maximum acceptable 
error for the difference between the tension values of the story 
arcs. In our experiments, we let Ω = 0.07. 

Once given as input the current story arc 𝑃𝑗 Ψ𝑘𝑎𝑟𝑐

𝑠𝑦𝑚 , a 

desired story arc 𝑑𝑎𝑟𝑐
𝑠𝑦𝑚

 (both in the symbolic notation), and the 
index of the current event 𝜋, the process to adapt a branching 
quest in real time comprises the following steps:  

1. Calculate the scaled story arcs 𝑃𝑗Ψ𝑘 𝑎𝑟𝑐

𝑠𝑐𝑎𝑙𝑒𝑑  and 

𝑑𝑎𝑟𝑐
𝑠𝑐𝑎𝑙𝑒𝑑  using Equations (1) and (2) (defined in 

Section III – B), according to 𝑃𝑗Ψ𝑘 𝑎𝑟𝑐

𝑠𝑦𝑚 and 𝑑𝑎𝑟𝑐
𝑠𝑦𝑚

; 

2. Calculate the difference between the tension values 

of 𝑑𝑎𝑟𝑐
𝑠𝑐𝑎𝑙𝑒𝑑

𝜋
 and 𝑃𝑗Ψ𝑘 𝑎𝑟𝑐

𝑠𝑐𝑎𝑙𝑒𝑑

𝜋
 using Equation (3); 

3. If 𝑑𝑖𝑓𝑓 (𝑑𝑎𝑟𝑐
𝑠𝑐𝑎𝑙𝑒𝑑

𝜋
, 𝑃𝑗Ψ𝑘 𝑎𝑟𝑐

𝑠𝑐𝑎𝑙𝑒𝑑

𝜋
) <  Ω:  

a. No plot adaptations are necessary. 

4. Otherwise: 

a. Identify the modification type (𝜆) required 
for the adaptation:  

i. If 𝑑𝑎𝑟𝑐
𝑠𝑐𝑎𝑙𝑒𝑑

𝜋
> 𝑃𝑗 Ψ𝑘𝑎𝑟𝑐

𝑠𝑐𝑎𝑙𝑒𝑑

𝜋
: 

1. 𝜆 = 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒; 

ii. Otherwise: 

1. 𝜆 = 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒; 

b. Get from the adaptation library 𝐿  all plot 
modifications of type 𝛾𝑖 = 𝜆 where 𝛼𝑖  and 
𝛽𝑖  hold in the current event and world state; 

c. Simulate the application of all accepted plot 
modifications in the current quest, which 

will produce a set of plot variants 𝑉 =
{𝑣𝑎𝑟1 , 𝑣𝑎𝑟2, … , 𝑣𝑎𝑟𝑛}.  

d. Calculate the scaled story arcs 𝑣𝑎𝑟𝑖𝑎𝑟𝑐
𝑠𝑐𝑎𝑙𝑒𝑑 

for all simulated plot variants 𝑣𝑎𝑟𝑖 ∈ 𝑉. 

e. Compare the story arcs 𝑣𝑎𝑟𝑖𝑎𝑟𝑐
𝑠𝑐𝑎𝑙𝑒𝑑  and 

𝑑𝑎𝑟𝑐
𝑠𝑐𝑎𝑙𝑒𝑑  using Equation (4), and then select 

the plot 𝑣𝑎𝑟𝑖  whose story arc 𝑣𝑎𝑟𝑖𝑎𝑟𝑐
𝑠𝑐𝑎𝑙𝑒𝑑 

produces the smallest error in comparison 

with 𝑑𝑎𝑟𝑐
𝑠𝑐𝑎𝑙𝑒𝑑 ; 

f. Update the plot of the current quest Ψ𝑘 
according to the selected 𝑣𝑎𝑟𝑖. 

When applying a plot modification 𝑚𝑖 to a quest, the state 
modifications 𝛿𝑖 ∈ 𝑚𝑖 are directly used to modify the current 
world state of the quest. In addition, the goal modifications 
𝜃𝑖 ∈ 𝑚𝑖 are used to establish new intermediate goals for the 
current event 𝑒𝑖 . These elements are used to define a new 
planning problem, where the current world state (modified 
according to 𝛿𝑖 ∈ 𝑚𝑖) is used to establish the initial state (𝑆0), 
and the ground literals of the state 𝑠𝑡𝑖 ∈ 𝑒𝑖 (the state that hold 
after 𝑒𝑖 ), complemented with the goals of 𝜃𝑖 , are used to 
establish the goal state (𝐺𝑖 ). The planning problem is then 
solved by a planner, which generates a new sequence of events 
to be added to the quest. In order to avoid inconsistencies 
caused by these new events and state modifications, a 
replanning procedure is performed in all planning problems of 
future branches of the quest. 

For example, let us consider the following situation:  

• A player 𝑃2  is at the 3rd event of quest Ψ1 (𝜋 =
3); 

• The preference model indicates that 𝑃2  will 
follow branches 𝐸1 + 𝐸2 + 𝐸4  (described in 
Section III – A); 

• The three-act story arc is the desired story arc for 

quest Ψ1 (𝑑𝑎𝑟𝑐
𝑠𝑦𝑚

= {+, +, +, −}). 

• The current story arc is: 𝑃2Ψ1𝑎𝑟𝑐
𝑠𝑦𝑚 =

{+, +, =, +, +, −, −, = , −, −}. 

By converting 𝑑𝑎𝑟𝑐
𝑠𝑦𝑚

 and 𝑃2Ψ1𝑎𝑟𝑐
𝑠𝑦𝑚  to their numeric 

representations, and then scaling them to the same time 
intervals (time is scaled to the interval [1, 10] and tension is 
scaled to the interval [0, 1]), the story arcs can be compared (a 
visual comparison is shown in Fig. 5): 

 

𝑑𝑎𝑟𝑐
𝑠𝑐𝑎𝑙𝑒𝑑 = {0.33, 0.33, 0.66, 0.66, 0.66, 1.00, 1.00, 0.66, 

0.66, 0.66}, 

𝑃2Ψ1𝑎𝑟𝑐
𝑠𝑐𝑎𝑙𝑒𝑑 = {0.25, 0.50, 0.50, 0.75, 1.00, 0.75, 0.50, 0.50,  

0.25, 0.00}. 

With both story arcs scaled to the same intervals, the 

difference between the tension values of 𝑑𝑎𝑟𝑐
𝑠𝑐𝑎𝑙𝑒𝑑

𝜋
 and 

𝑃2Ψ1𝑎𝑟𝑐
𝑠𝑐𝑎𝑙𝑒𝑑

𝜋
 can be calculated: 

 

𝑑𝑖𝑓𝑓 (𝑑𝑎𝑟𝑐
𝑠𝑐𝑎𝑙𝑒𝑑

𝜋
, 𝑃2Ψ1𝑎𝑟𝑐

𝑠𝑐𝑎𝑙𝑒𝑑

𝜋
) = (0.66 − 0.50)2 = 0.0277 

 

Considering that 𝑑𝑖𝑓𝑓 (𝑑𝑎𝑟𝑐
𝑠𝑐𝑎𝑙𝑒𝑑

𝜋
, 𝑃2Ψ1𝑎𝑟𝑐

𝑠𝑐𝑎𝑙𝑒𝑑

𝜋
) is less than Ω, 

no interferences in the plot are required at this point. 
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Fig. 5. Visual comparison beteween the desired story arc 𝑑 and the current 

story arc for quest 𝑃2Ψ1. The doted red line indicates the current player 

position in the story arc. 

However, the player may decide to explore the world on 
his way to the store and may end up finding and using a heal 
item (the item is automatically used when collected), which – 
according to the tension effect of heal operator – reduces the 
tension of the narrative. The action of collecting/using the 
item will trigger another run of the quest adaptation procedure 
to verify the consistency of the current story arc. Considering 
the heal event, the symbolic representation of the current 

story arc is updated to: 

𝑃2Ψ1𝑎𝑟𝑐
𝑠𝑦𝑚 = {+, +, −, =, +, +, −, −, = , −, −}, 

then it is scaled to: 

𝑃2Ψ1𝑎𝑟𝑐
𝑠𝑐𝑎𝑙𝑒𝑑 = {0.33, 0.66, 0.33, 0.33, 0.66, 1.00, 0.66, 0.33, 

0.33, 0.00}, 

and the difference between the tension values of 𝑑𝑎𝑟𝑐
𝑠𝑐𝑎𝑙𝑒𝑑

𝜋
 and 

𝑑𝑎𝑟𝑐
𝑠𝑐𝑎𝑙𝑒𝑑

𝜋
 can be calculated as: 

𝑑𝑖𝑓𝑓 (𝑑𝑎𝑟𝑐
𝑠𝑐𝑎𝑙𝑒𝑑

𝜋
, 𝑃2Ψ1𝑎𝑟𝑐

𝑠𝑐𝑎𝑙𝑒𝑑

𝜋
) = (0.66 − 0.33)2 = 0.1111 

As result, 𝑑𝑖𝑓𝑓 (𝑑𝑎𝑟𝑐
𝑠𝑐𝑎𝑙𝑒𝑑

𝜋
, 𝑃2Ψ1𝑎𝑟𝑐

𝑠𝑐𝑎𝑙𝑒𝑑

𝜋
)  will be greater 

than Ω (0.07), so a plot adaptation procedure is required to 
approximate the current story arc to the desired story arc (a 
visual comparison of both story arcs is presented in Fig. 6).  

 

Fig. 6. Visual comparison beteween the desired story arc 𝑑 and the current 

story arc for quest 𝑃2Ψ1 after the player finding and using a heal item. The 

doted red line indicates the current player position in the story arc. 

Considering that 𝑑𝑎𝑟𝑐
𝑠𝑐𝑎𝑙𝑒𝑑

𝜋
> 𝑃2Ψ1𝑎𝑟𝑐

𝑠𝑐𝑎𝑙𝑒𝑑

𝜋
, the dramatic 

tension of the current story arc must be increased, therefore 
𝜆 = 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒. By testing the event and state preconditions 
(𝛼𝑖  and 𝛽𝑖 ) of the plot adaptions 𝑚𝑖 ∈ 𝐿 where 𝛾𝑖 = 𝜆, two 
possible plot adaptions for the current event are identified: (1) 
block the player passage (𝑚1 ∈ 𝐿); and (2) spawn an enemy 

at the current player location (𝑚3 ∈ 𝐿). 

After identifying the possible plot adaptations, their 
application in the current state is simulated and evaluated. As 

previously presented, the state modifications 𝛿1 ∈ 𝑚1 
comprise: ¬open(PL2), at(key(PL2, KE), PL1). Both 

PL2 and PL1 are variable terms instantiated according to the 

event precondition (𝛼1 = {go(CH, PL1, PL2)}) and the 
current event where the precondition holds (go(james, 

shelter, store)) . The function symbol key is also 

instantiated by identifying the object that is a key to open PL2 
(store), which is called keystore1. Therefore, the state 

modifications are instantiated as ground terms: 
¬open(store), at(keystore1, shelter). Similarly, 

the goal modification 𝜃1 ∈ 𝑚1  is also instantiated as: 
open(store), know-was-closed(james, store).  

Assuming that the current world state comprises:  

healthy(james), healthy (elizabeth),    

open(shelter), open(store), at(elizabeth, 

shelter), at(karen, shelter),starving(karen), 

know-need(elizabeth, karen, food1), know-

request(james, elizabeth, food1), at(james, 

village). 

and since that the state that holds after the current event is: 

healthy(james), healthy (elizabeth), 

open(shelter), open(store), at(elizabeth, 

shelter), at(karen, shelter), 

starving(karen), know-need(elizabeth, karen, 

food1), know-request(james, elizabeth, 

food1), at(james, store). 

a new planning problem can be defined, with initial state 𝑆0: 

healthy(james), healthy (elizabeth),    

open(shelter), at(elizabeth, shelter), 

at(karen, shelter),starving(karen), know-

need(elizabeth, karen, food1), know-

request(james, elizabeth, food1), at(james, 

village), at(keystore1, shelter). 

and with goal state 𝐺𝑖 comprising: 

healthy(james), healthy (elizabeth), 

open(shelter), at(elizabeth, shelter), 

at(karen, shelter), starving(karen), know-

need(elizabeth, karen, food1), know-

request(james, elizabeth, food1), at(james, 

store), open(store), know-was-closed(james, 

store). 

After solving the planning problem, a new sequence of 
events is generated, which is then added to the quest plot to 
define a plot variant. Replanning procedures are performed in 
all remaining quest branches to guarantee the logical 
consistency of the plot. The resulting plot variant is (new 
events were highlighted in bold): 

𝑣𝑎𝑟1 = ..., fail-to-open(james, store, 

village), go(james, village, shelter), 

getkey(james, keystore1, shelter), go(james, 

shelter, store), open(james, store, 

keystore1, village), go(james, village, 

store), ask(james, michael, food1, store), 

request-payment(michael, james, store), 

pay(james, michael, store), give(michael, 

james, food1, store), go(james, store, 

shelter), deliver(james, elizabeth, food1, 

shelter), feed(elizabeth, karen, food1, 

shelter).  

A similar process is performed for plot adaptation 𝑚3 , 
which produces another plot variant:  
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𝑣𝑎𝑟2 = ..., kill(james, monster1, village), 

go(james, village, store), ask(james, 

michael, food1, store), request-

payment(michael, james, store), pay(james, 

michael, store), give(michael, james, food1, 

store), go(james, store, shelter), 

deliver(james, elizabeth, food1, shelter), 

feed(elizabeth, karen, food1, shelter). 

After generating all plot variants, their story arcs are 
calculated:   

𝑣𝑎𝑟1𝑎𝑟𝑐
𝑠𝑐𝑎𝑙𝑒𝑑 = {0.33, 0.33, 0.66, 1.0, 1.0, 0.66, 1.00, 0.66,  

0.33, 0.00} 

𝑣𝑎𝑟2𝑎𝑟𝑐
𝑠𝑐𝑎𝑙𝑒𝑑 = {0.25, 0.25, 0.50, 0.50, 0.75, 1.00, 0.75, 0.50,  

0.25, 0.00} 

and then are compared with the desired story arc: 

𝑎𝑟𝑐𝑑𝑖𝑓𝑓(𝑑𝑎𝑟𝑐
𝑠𝑐𝑎𝑙𝑒𝑑 , 𝑣𝑎𝑟1𝑎𝑟𝑐

𝑠𝑐𝑎𝑙𝑒𝑑) =  0.0888 

𝑎𝑟𝑐𝑑𝑖𝑓𝑓(𝑑𝑎𝑟𝑐
𝑠𝑐𝑎𝑙𝑒𝑑 , 𝑣𝑎𝑟2𝑎𝑟𝑐

𝑠𝑐𝑎𝑙𝑒𝑑) =  0.0784 

Both adapted plots improve the story arc of the quest 
(because the difference between the previous and the desired 
story arcs was 0.1111). Since 𝑎𝑟𝑐𝑑𝑖𝑓𝑓(𝑑𝑎𝑟𝑐

𝑠𝑐𝑎𝑙𝑒𝑑 , 𝑣𝑎𝑟2𝑎𝑟𝑐
𝑠𝑐𝑎𝑙𝑒𝑑) <

𝑎𝑟𝑐𝑑𝑖𝑓𝑓(𝑑𝑎𝑟𝑐
𝑠𝑐𝑎𝑙𝑒𝑑 , 𝑣𝑎𝑟1𝑎𝑟𝑐

𝑠𝑐𝑎𝑙𝑒𝑑),  the plot generated for 𝑣𝑎𝑟2  is 

used to update the current plot of quest Ψ1.  

IV. APPLICATION AND EVALUATION 

The game used to test and evaluate the proposed quest 
adaptation method is a 2D RPG developed for a previous 
project [5][6][7][8], in which we incorporated the proposed 
system to adapt the plot of branching quests in real-time (Fig. 
7). The game pertains to a zombie survival genre, telling the 
story of a family that lives in a world dominated by a zombie 
plague. The gameplay is designed to be driven by the story 
quests, but the player is free to explore the game world. While 
performing a quest or exploring the world, players can collect 
items, deliver items, interact with non-player characters, kill 
enemies, open locked doors, fix broken bridges, cure infected 
characters, and feed those who starve. The game comprises 14 
story quests, of which 3 were created by a professional game 
designer and 11 were generated by a procedural quest 
generation algorithm (as described in [8]). The game also 
includes 4 side-quests (quests that are not related to the main 
story of the game), which were algorithmically generated. 
More details about the game are presented in [7] and [8]. 

 

Fig. 7. Scene from the game prototype: the player is faced with the 

decision that will lead quest Ψ1 to branches E4, E5, or E6. 

To evaluate the proposed quest adaptation method, we 
conducted a user test to analyze the progress of real players 

through the dynamic plot of the adaptive quests. A total of 12 
volunteers participated in the study (11 bachelor’s students 
and 1 master’s student). Ten subjects were male and two 
female. Ages ranged from 18 to 25 years (mean of 20.3). All 
of them play video games at least weekly. 

For the experiment, we created two versions of our game: 
(1) Adaptive Version, which fully uses the proposed method 
to adapt the plot of quests using the three-act story arc as the 
desired story; and (2) Base Version, wherein the quest 
adaptation process is disabled. Both versions were designed to 
automatically capture and store all player actions, decisions, 
and the story arcs experienced by players in all quests. 

The participants were divided into two groups: 6 of them 
were randomly selected to play the Adaptive Version, and the 
other 6 participants played the Base Version. Before testing 
the game, all subjects filled a consent form, answered a basic 
demographic questionnaire, and then were asked to freely play 
our game. To avoid biased experiences, we did not mention to 
participants that the game was adapting the plot of quests.  

Although we applied our quest adaption method in all 
quests of the Adaptive Version of the game, not all players 
were experiencing the same quests during a single 
playthrough of the game. As described in [8], our game adopts 
a tree structure to establish hierarchical dependencies between 
story quests, which defines the storyline of the game and the 
quests made available according to player decisions in 
previous branching quests. Therefore, we shall focus the 
analysis for this study in the first quest of the game Ψ1 
(described in Section III), which is played by all players and 
allows us to compare both versions of the game.  

All participants were able to complete the game. On 
average, each session of the Base Version lasted 15.6 minutes 
(standard deviation 3.1), and each session of the Adaptive 
Version lasted 19.7 minutes (standard deviation 4.3). The 
average time required by players to complete quest Ψ1 on the 
Base Version was 4.8 minutes (standard deviation 3.3), and 
6.9 minutes on the Adaptive Version (standard deviation 3.8). 

To analyze the story arcs experienced by players in quest 
Ψ1 , we compared the differences between the story arcs 
effectively experienced by players and the desired story arc 
(using equation (4)). The average difference between the story 
arcs in the Base Version was 0.0936 (standard deviation 
0.0272). In the Adaptive Version, the average difference was 
0.0282 (standard deviation 0.0113), which is more than three 
times smaller than the difference obtained for the Base 
Version. Fig. 8 shows the best and worst story arcs for the 
Adaptive Version as compared to the desired story arc. The 
best and worst story arcs for the Base Version are in Fig. 9.  

 

 

Fig. 8. Comparison of the three-act story arc with the best and worst story 

arcs experienced by players in quest Ψ1 of the Adaptive Version. 
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Fig. 9. Comparison of the three-act story arc with the best and worst story 

arcs experienced by players in quest Ψ1 of the Base Version. 

V. CONCLUDING REMARKS 

The paper presented a novel quest adaptation method 
combining automated planning, player modeling and dramatic 
structures. Starting with sound and coherent branching quests 
designed by professional game designers or by procedural 
content generation algorithms, the method is capable of 
adapting the plot of quests in real-time by introducing new 
events that will lead the player to situations that sufficiently 
increase or decrease the dramatic tension of the narrative. 

The results of our experiment show that the proposed 
method is indeed capable of approximating the story arcs of 
quests to an expected story arc, as players progress through 
the narrative and freely interact with the game world. The time 
required by players to complete the adapted quests is of course 
longer than in non-adaptive quests, since the adaptations 
introduce new events into the plot. This, however, did not 
prevent the participants to complete the game, and their 
positive feedback, especially the enthusiasm demonstrated by 
them when they were told that the game was adapting the 
quests according to their actions, is a welcome stimulus for the 
continuation of our work. 

Apart from our commitment to validate our method in 
more rigorous user studies, one promising future work that 
caught our attention is the automatic measurement of the 
tension produced by each type of quest event according to past 
player data. Currently, these effects are manually defined by 
human authors, who have to judge which events can increase 
or decrease the dramatic tension of the narrative according to 
their past experience. In this context, the use of sensors to 
collect players’ biometric data and vital signals in combination 
with machine learning techniques, can be useful to identify 
patterns in the emotional reactions of players. These patterns 
would then be used by our quest adaptation method as a source 
of information about the dramatic impact of each narrative 
event, in order to attain a closer conformity between system-
generated and predefined story arcs. 
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