

Adaptive Branching Quests Based on Automated

Planning and Story Arcs

Edirlei Soares de Lima
Faculty of Design, Technology and

Communication – IADE
Universidade Europeia

Lisbon, Portugal
edirlei.lima@universidadeeuropeia.pt

Bruno Feijó
Department of Informatics

Pontifical Catholic University of Rio de
Janeiro

Rio de Janeiro, Brazil
bfeijo@inf.puc-rio.br

Antonio L. Furtado
Department of Informatics

Pontifical Catholic University of Rio de
Janeiro

Rio de Janeiro, Brazil
furtado@inf.puc-rio.br

Abstract — Interactive storytelling in games is a powerful

tool to create immersive and engaging experiences for players.

In this context, the adherence to a predefined story arc, coupled

with adaptation to individual personality traits, are essential to

ensure, at the same time, thematic consistency and player

involvement in story-driven games. One promising way to meet

such requirements is to treat plot composition as an interactive

plan-generation problem, and develop a method whereby

branching quests can be adequately handled and adapted in

real-time. A key feature of the method is the ability to, after

evaluating the effects of player decisions, perform the

adaptations needed to keep the current story arc in close

approximation to the predefined story arc. The underlying

player preference model uses a set of artificial neural networks

trained, on the basis of the players’ responses to a brief Big Five

personality test, to classify their preferences for specific quest

decisions. This paper presents our quest adaptation method and

summarizes the results we obtained through the application of

our method in a fully implemented game prototype.

Keywords—Quest Adaptation, Automated Planning, Dramatic

Structures, Branching Narratives, Interactive Storytelling

I. INTRODUCTION

The design of interactive narratives for games is a
challenging task, wherein the adoption of a well-configured
story arc is a crucial step to ensure that the players will be led
through dramatically engaging sequences of events. In the
past, even the compatibility of narrative with the effects of
interaction has been questioned due to the lack of control
allegedly suffered by authors over narrative structures in
interactive media [1][2]. Today, however, interactive
storytelling in videogames is a very common practice and
many recent games include quests with branching storylines,
such as Mass Effect 2 (BioWare, 2010), The Witcher 3: Wild
Hunt (CD Projekt RED, 2015), and Cyberpunk 2077 (2020).

When designing interactive narratives for games, one
major problem is then how to achieve branching narratives in
which all storylines follow a dramatic structure consistent
with a predefined story arc. The problem involves the mutual
dependence of the players’ actions, affected in complex ways
by the players’ possible narrative choices.

Although story arcs were originally proposed as a way to
represent the structure of a dramatic linear work, such as a
play or film, the new entertainment media has been applying
classical dramatic structures for non-linear interactive media,
such as videogames [3][4]. Considering that non-linearity can
be achieved by simply allowing players to customize their
linear experiences during a playthrough, traditional narrative
structures can still be applied to non-linear branching quests.

In this way, one could manually plan all possible storylines of
a branching quest to follow an intended narrative structure, but
that still does not account for the freedom that players usually
have while performing quests. Most games allow players to
explore the world (where they can meet new characters, fight
enemies, find new items, etc.) while performing the tasks of a
quest, and these detours can directly affect the tension of the
narrative that is experienced by the player, thus breaking the
story arc that was manually drawn for the quest.

In this context, artificial intelligence methods can provide
ways to dynamically generate or adapt storylines according to
a user-specified story arc. In previous works, we developed
prototypes to generate quests for games employing automated
planning [5], player modeling [7][8]. With these techniques,
we were able to obtain an encouraging level of variety in plot
composition with high flexibility to support the richness of the
mutable interactive virtual worlds of games. We now propose
to invest on a strategy that is based on the adaptation of
already existing branching quests. Instead of generating quests
from scratch, an adaptation strategy starts with a sound and
coherent quest and modifies its events according to author-
specified requirements and/or player preferences.

In this paper, we propose a new quest adaptation method
to apply a dramatic structure to branching quests in real-time.
By relying on the dynamic structure of quests, which are
specified as planning problems, our method can adapt the plot
and introduce new events into quests that will lead the player
to situations that sufficiently increase or decrease the dramatic
tension of the narrative so as to achieve the approximation of
the current story arc to the expected story arc.

The paper is organized as follows. Section II presents
related work. Section III introduces our quest adaptation
method. Section IV describes its application by way of a fully
implemented game prototype and presents the results of an
evaluation study. Section V offers concluding remarks.

II. RELATED WORK

There are several works on quest generation in the
literature, such as the framework presented by Sullivan et al.
[9], which uses a rule-based system to dynamically generate
the structure of quests according to a library of existing quests.
Another recent framework for quest generation was proposed
by Ammanabrolu et al. [10], who present a method to generate
cooking quests for text-adventure games using Markov chains
and a neural language model to make the recipes. A similar
approach is explored by Chongmesuk and Kotrajaras [11], but
focusing on the analysis of the alternative paths that can be
generated for a given type of quest. A more dynamic solution
is presented by Lima et al. [5], who propose a method to

9

2021 20th Brazilian Symposium on Computer Games and Digital Entertainment (SBGames)

2159-6662/21/$31.00 ©2021 IEEE
DOI 10.1109/SBGames54170.2021.00012

generate quests based on hierarchical task decomposition and
planning under non-determinism. In a recent work, Lima et al.
[7] also proposed a quest generation method based on genetic
algorithms and automated planning.

Although both quest generation and adaptation tasks can
produce new plots, most of the adaptation methods rely on
existing quest plots and use player modeling techniques to
infer player preferences. As this paper concerns quest
adaptation, we shall focus our analyses of related work on
previous works that are centered on this subject. In this
context, Li and Riedl [12][13] present an offline refinement
search algorithm based on partial order planning that
iteratively modifies a pre-existing storyline (deleting and
inserting quests and events) until it matches the preferences of
a target player. The method we propose here is also based on
planning, but instead of adapting the storyline by way of an
offline procedure, it performs all the adaptations in real-time.
Li and Riedl’s technique is limited to previously known
player’s preferences, and does not account for preference
changes and player actions occurring during the game. In
contrast, our method relies on the dramatic structure of the
narrative, which is directly affected by in-game player actions.

A framework to adapt game narratives according to
player’s emotions is presented by Freilão [14]. However, all
the adaptations are predetermined by the author and no
narrative generation method is employed in the process. A
more complex emotion-based for narrative adaptation method
is explored by Hernandez et al. [15][16], who present a system
called PACE, which lets the author specify the emotions that
players should experience during a narrative-based game.
Their system selects narrative segments to be presented to the
player so as to provoke emotional reactions that are close to
the emotions the author intended. Despite allowing authors to
specify the emotions that players will experience in narrative-
based games, PACE does not provide the level of freedom
offered by games that are more open to player interactions,
such as role-playing games (RPGs). To meet this requirement,
our method adapts the plot of quests according to the dramatic
structure of the narrative, which is represented as a story arc
that is updated in response to all in-game player actions.

A similar approach is explored by Zook et al. [17], who
present a skill-based mission generation system that uses
player modeling and genetic algorithms to create the game
missions. Their system uses the player model to predict a
player’s performance in response to the mission’s challenges
and then compares the predicted performance to the author’s
desired performance. The concept of a target player
performance curve is similar to how we define a desired story
arc in the present work, but these two concepts have different
meanings: while player performance is related to the difficulty
of the game, the story arc is related to the dramatic tension of
the narrative. In addition, the system of Zook et al. does not
perform plot adaptations while the player is progressing
through a mission. In contrast, our method adapts the plot of
quests in real-time to compensate for player actions that may
deviate the current story arc from the author’s intended arc.

III. ADAPTIVE BRANCHING QUESTS

A. The Structure of Branching Quests

In games, a quest represents a journey in which the
protagonist (controlled by the player) performs tasks in order
to overcome challenges and achieve meaningful goals [18].
Accordingly, in this paper, we define a quest as a set of tasks

(e.g. killing enemies, escorting and saving characters,
collecting and delivering items) which the player must
accomplish. The success in achieving these tasks or the
different decisions made by players while performing those
tasks will lead them to experience a unique and customized
plot. In the present article, we call this unique plot a storyline.

In this work, we use the same definition of quests used in
[8], where quests are modeled as a tree structure named
branching quest (Ψ) (Fig. 1), that is:

• The root node represents the initial state of the
quest (𝑆0);

• Internal nodes define intermediate goal states
(𝐺𝑖) and intermediate states (𝑆𝑖);

• Leaf nodes define final goals and final states for
the quest;

• A branch (𝐸𝑖) is composed of a pair of nodes (𝑆𝑗 ,

𝐺𝑖) and an edge (𝑆𝑗 → 𝐺𝑖), 𝑗 ≺ 𝑖, where the edge

comprises a sequence of events to achieve the
intermediate or final goal 𝐺𝑖 (and state 𝑆𝑖) from
the initial state or the intermediate state that
precedes 𝑆𝑖 (i.e., 𝑆𝑗). For example, 𝐸4 is

composed of (𝑆1, 𝐺4) and (𝑆1 → 𝐺4).

Fig. 1. Tree structure of a branching quest.

Each branch of the quest tree is encoded as a planning
problem:

𝐸𝑖 = (𝐹, 𝑆𝑗 , 𝐺𝑖 , 𝑂), 𝑗 ≺ 𝑖,

where 𝐹 is a set of atomic formulas (or atoms, for short), 𝑂 is
a set of planning operators, 𝑆𝑗 ⊆ 𝐹 is the initial state of 𝐸𝑖, and

𝐺𝑖 ⊆ 𝐹 is the goal state in the form of a ground literal. A literal
is an atom 𝑓 or the negation of an atom (¬𝑓) . In this
definition, a planning operator 𝑜 ∈ 𝑂 is denoted by:

𝑜 = (𝑛𝑎𝑚𝑒(𝑜), 𝑝𝑟𝑒𝑐𝑜𝑛𝑑(𝑜), 𝑒𝑓𝑓𝑒𝑐𝑡(𝑜), 𝑡𝑒𝑛𝑠𝑖𝑜𝑛(𝑜))

where 𝑛𝑎𝑚𝑒(𝑜) is the name of the operator in the form of an
atom 𝑜𝑝(𝑥1, 𝑥2, … , 𝑥𝑘), 𝑝𝑟𝑒𝑐𝑜𝑛𝑑(𝑜) and 𝑒𝑓𝑓𝑒𝑐𝑡(𝑜) are sets
of literals that define the preconditions and the effects of 𝑜. A
detailed explanation of these basic terms used in automated
planning can be found in our previous works [6][7]. In contrast
with the definition used in [8], we extend planning operators
with the component 𝑡𝑒𝑛𝑠𝑖𝑜𝑛(𝑜) , which establishes how 𝑜
affects the overall tension of the quest’s narrative, which can

be increased (+), decreased (−), or maintained (=). As an
example, the first branch 𝐸1 of quest Ψ1 is the planning
problem 𝐸𝑖 = (𝐹, 𝑆0, 𝐺1 , 𝑂), where 𝑂 = {𝑜1, 𝑜2, 𝑜3}, and

𝑛𝑎𝑚𝑒(𝑜1) = go(CH,PL1,PL2),

𝑛𝑎𝑚𝑒(𝑜2) = see-starving(CH1,CH2,PL),

10

𝑛𝑎𝑚𝑒(𝑜3) = request-another(CH1,CH2,CH3,IT,PL).

The variables in these operators are characters (CH), places
(PL) and items (IT). As a complete example of operator, we
present request-another:

o3:

 name: request-another(CH1, CH2, CH3, IT, PL)

 precond: character(CH1), character(CH2),

 character(CH3),item(IT),place(PL),

 at(CH1,PL),at(CH2, PL), alive(CH1),

 alive(CH2), healthy(CH2),

 hero(CH2), know-need(CH1, CH3, IT)

 effect: know-request(CH2, CH1, IT)

 tension: +

An example of goal is:

G1: know-request(james, elizabeth, food1),

 at(james, store)

By solving the planning problem of a branch using a
planning algorithm, a linear sequence of plot events is
generated from the initial state 𝑆𝑗 . In our implementation, we

used the HSP2 heuristic search planner of Bonet and Geffner
[19], which is compatible with our STRIPS-based formalism.

The plot of each branch is a sequence of events Ψ𝑗E𝑘 =
{𝑒1, 𝑒2, … , 𝑒𝑛}. Each event 𝑒𝑖 is a pair (𝑒𝑣𝑖 , 𝑠𝑡𝑖), where 𝑒𝑣𝑖 is a
ground literal that describes the event, and 𝑠𝑡𝑖 is a set of
ground literals that describe the world state that holds after the
event 𝑒𝑖. In the above example, the generated plot for Ψ1E1 is
{𝑒1, 𝑒2, 𝑒3}, where events are highlighted in bold and new
ground literals added to the state by the current event operator
are highlighted with underline:1

Ψ1E1:
 𝑒1:

𝑒𝑣1=see-starving(elizabeth, karen,

 shelter),

𝑠𝑡1={healthy(james), healthy (elizabeth),

 open(shelter), open(store),

 at(james, shelter),

 at(elizabeth, shelter),

 at(karen, shelter), starving(karen),

 know-need(elizabeth, karen, food1)}

 𝑒2:
𝑒𝑣2=request-another(elizabeth, james,

 food1, shelter),

𝑠𝑡2={healthy(james), healthy (elizabeth),

 open(shelter), open(store),

 at(james, shelter),

 at(elizabeth, shelter),

 at(karen, shelter), starving(karen),

 know-need(elizabeth, karen, food1),

 know-request(james, elizabeth, food1)}

 𝑒3:
𝑒𝑣3=go(james, shelter, store),

𝑠𝑡3={healthy(james), healthy (elizabeth),

 open(shelter), open(store),

 at(elizabeth, shelter),

 at(karen, shelter), starving(karen),

 know-need(elizabeth, karen, food1),

 know-request(james, elizabeth, food1),

 at(james, store)}

1 Static literals (i.e., literals that never change in this example), such

as character(CH), alive(CH), and path(PL1, PL2),

were omitted from the state descriptions.

This simple plot starts with the character Elizabeth
watching her daughter Karen starving. Then, Elizabeth
requests food to James (the character controlled by the player),
who goes to the store looking for the requested item.

When the planner solves the planning problem of a branch,
the resulting plan defines the branch’s storyline. In addition,
the final state of this plan is used to establish the intermediate
state of the branch’s child node. This child node can then be
used as the initial state to continue the story towards the goals
of successor branches.

Fig. 2 shows an example of branching quest (Ψ1) designed
using our formalism. Considering that the plot of Ψ1E1 was
shown in the previous example, the plot for the remaining
branches 𝐸𝑖 of Ψ1 are (for simplicity, we only present the

literals 𝑒𝑣𝑖 that describe the events of each branch):

Ψ1E2 = ask(james, michael, food1, store).

Ψ1E3 = steal(james, michael, food1, store),
go(james, store, shelter), deliver(james,

elizabeth, food1, shelter), feed(elizabeth,

karen, food1, shelter).

Ψ1E4 = request-payment(michael, james, store),
pay(james, michael, store), give(michael,

james, food1, store), go(james, store,

shelter), deliver(james, elizabeth, food1,

shelter), feed(elizabeth, karen, food1,

shelter).

Ψ1E5 = request-kill(michael, james,
villagemonster1, store), go(james, store,

village), kill(james, villagemonster1,

oldgun, village), go(james, village, store),

report-kill(james, michael, villagemonster1,

store), give(michael, james, food1, store),

go(james, store, shelter), deliver(james,

elizabeth, food1, shelter), feed(elizabeth,

karen, food1, shelter).

Ψ1E6 = request(michael, james,
hospitalstoragekey, store), go(james, store,

hospital), steal(james, steven,

hospitalstoragekey, hospital), go(james,

hospital, store), give(james, michael,

hospitalstoragekey, store), give(michael,

james, food1, store), go(james, store,

shelter), deliver(james, elizabeth, food1,

shelter), feed(elizabeth, karen, food1,

shelter).

The tree structure of a branching quest can be manually
created by a game designer or automatically generated by
procedural content generation algorithms. In the former case,
a human game designer is responsible for defining the logical
description of the initial state for the quest (the game world
state in which the quest can start), as well as for establishing
intermediate and final goals for the different branches of the
quest. On the other hand, when quests are created by
procedural content generation techniques, the entire structure
of the quest tree is generated by an algorithm, including the
definition of the initial state and goals (as described in a
previous work of our group [8]). In both cases, the planning
problem of the branches is solved by a planner in real-time to

11

generate the final storyline as the player progresses through
the quest during the game. This dynamic structure provides an
opportunity for the development of new algorithms that can
adapt the plot of quests in real time according to variables that
can only be instantiated during the game, such as individual
player preferences, behaviors, or the dramatic structure of the
narrative, which can be directly affected by player actions.

Fig. 2. Tree structure of branching quest Ψ1.

B. The Representation of Story Arcs

In classical non-interactive media (e.g. literature, theatre,
novels), the dramatic structure of a work is implied by the
form of its narrative and the dramatic impact of its events. In
the context of our work, the concept of story arcs stands out as
a normative way to represent narrative structures. A popular
story arc is the three-act structure (Fig. 3a), which is
commonly used by the film industry and is divided into Setup
(1/4 of the story time), Confrontation (2/4 of the story time),
and Resolution (1/4 or less of the story time). We can use this
story arc or any other tension function (see [20] for an
overview on story arcs). In the present work, time is discrete.
Moreover, we linearize the tension function by parts and
assign values to the plot points using unit increments (we
propose to call this function a piecewise linear story arc). This
is a simple way of having a flexible, standard story arc to be
used as the desired arc for the whole story. Fig. 3b is the
piecewise linear three-act story arc used in our experiments.

Although some modern literary scholars tend to be hostile
to norms of structure [21], the new entertainment media, such
as videogames, have special needs and challenges as they
engage players in short narrative episodes (quests and side-
quests) with strong focus on the interactive aspects of the
experience. In this case, normative notions of dramatic
structure are very helpful to increase player engagement.

We represent the piecewise linear story arc of a plot 𝑑 as a

sequence of symbols 𝑑𝑎𝑟𝑐
𝑠𝑦𝑚

= {𝑠1, 𝑠2, … , 𝑠𝑛}, where each 𝑠𝑖
can be: “+” to indicate rise; or “-” to indicate fall; or “=” to
indicate that the tension level is maintained. The number of
symbols in the sequence represents the discretized time axis.
For example, the three-act story arc 𝑑 illustrated in Fig. 3b can

be expressed as: 𝑑𝑎𝑟𝑐
𝑠𝑦𝑚

= {+, +, +, −}.

The symbolic representation of a story arc can also be
converted into a numeric representation 𝑑𝑎𝑟𝑐

𝑛𝑢𝑚 =
{𝑣1, 𝑣2, … , 𝑣𝑛}, where each 𝑣𝑖 of 𝑑𝑎𝑟𝑐

𝑠𝑦𝑚
 is a number indicating

2 We used the following tension effects of the operators: go: =,
see-starving: +, request-another: +, ask:+, steal:+,

the current tension value in the vertical axis of the story arc.
We propose to start the function with zero, and add 1, subtract

1 or do nothing if the symbol is “+”, “−”, or “=” respectively.

For example, the symbolic story arc 𝑑𝑎𝑟𝑐
𝑠𝑦𝑚

= {+, +, +, −}
yields to 𝑑𝑎𝑟𝑐

𝑛𝑢𝑚 = {1, 2, 3, 2}.

Fig. 3. Examples of story arcs: (a) the well-known three-act story arc; and

(b) a piecewise linear three-act story arc.

The storyline generated for a branching quest can also be
expressed in this notation. For example, the story arc for a
storyline created by a player 𝑃1 traversing the tree structure of
branching quest Ψ1 (as in Section III – A), following branches
𝐸1 + 𝐸2 + 𝐸6, can be rendered in symbolic notation as:2

𝑃1Ψ1𝑎𝑟𝑐
𝑠𝑦𝑚 = {+, +, =, +, +, =, +, =, −, −, =, −, −},

and converted to its numeric representation:

𝑃1Ψ1𝑎𝑟𝑐
𝑛𝑢𝑚 = {1, 2, 2, 3, 4, 4, 5, 5, 4, 3, 3, 2, 1},

Considering that story arcs can have different time and
tension scales, a normalization procedure to scale them to
standard intervals is needed for further comparisons. In our
experiments, time is scaled to the interval [1, 10], and tension
to the interval [0, 1]. The normalization formula to calculate
the scaled story arc of a plot 𝑝 is the same used in [8],
reproduced below to help understanding the current extension:

∀𝑗 ∈ {1, … , 10} 𝑝𝑎𝑟𝑐𝑗
𝑠𝑐𝑎𝑙𝑒𝑑

=

𝑝𝑎𝑟𝑐
𝑛𝑢𝑚

⌈
𝑗−1
10

(𝑝𝑎𝑟𝑐
𝑛𝑢𝑚̅̅ ̅̅ ̅̅ ̅̅ −1)⌉+1

− min(𝑝𝑎𝑟𝑐
𝑛𝑢𝑚)

max(𝑝𝑎𝑟𝑐
𝑛𝑢𝑚) − min(𝑝𝑎𝑟𝑐

𝑛𝑢𝑚)

(1)

where 𝑝𝑎𝑟𝑐
𝑛𝑢𝑚̅̅ ̅̅ ̅̅ ̅ denotes the length of 𝑝𝑎𝑟𝑐

𝑛𝑢𝑚 , and min(𝑝) and
max(𝑝) are functions that return the minimum and maximum
tension values of 𝑝 . For example, the three-act story arc
𝑑𝑎𝑟𝑐

𝑛𝑢𝑚 = {1, 2, 3, 2} and the 𝑃1Ψ1𝑎𝑟𝑐
𝑛𝑢𝑚 above are respectively

scaled to:

𝑑𝑎𝑟𝑐
𝑠𝑐𝑎𝑙𝑒𝑑 = {0.3, 0.3, 0.6, 0.6, 0.6, 1.0, 1.0, 0.6, 0.6, 0.6}

𝑃1Ψ1𝑎𝑟𝑐
𝑠𝑐𝑎𝑙𝑒𝑑 = {0.2, 0.4, 0.6, 0.8, 0.8, 1.0, 0.8, 0.6, 0.4, 0.2}

With two story arcs scaled to the same intervals, we can
calculate their differences. The direct difference between two
points at index 𝑖 in two scaled story arcs (𝑥 and 𝑦) is given by:

deliver:-, feed:-, request-payment:+, pay:-, give:-,

request-kill:+, kill:-, report-kill:-, request:+.

time

Climax

introduction

rising action

falling action

Incident

Plot Point

Setup Confrontation Resolution

crisis

tension

tension

s1 s2 s3 s4

time
Setup Confrontation Resolution

1

2

3

(a)

(b)

12

𝑑𝑖𝑓𝑓(𝑥𝑖 , 𝑦𝑖) = (𝑥𝑖 − 𝑦𝑖)
2 (2)

And the difference between two story arcs (𝑝 and 𝑑) is:

𝑎𝑟𝑐𝑑𝑖𝑓𝑓(𝑝, 𝑑) =
1

𝑛
∑ 𝑑𝑖𝑓𝑓(𝑝𝑎𝑟𝑐𝑖

𝑠𝑐𝑎𝑙𝑒𝑑 , 𝑑𝑎𝑟𝑐𝑖
𝑠𝑐𝑎𝑙𝑒𝑑)

𝑛

𝑖=1

 (3)

where 𝑛 is the maximum value used in the scaled time interval
of the story arcs (in our experiments, 𝑛 = 0).

Although the mathematical representation of story arcs
allows direct comparisons between two story arcs, applying a
dramatic structure to interactive and non-linear narratives is a
challenging task, giving the fact that traditional narrative
structures are inherently linear and are not prepared to handle
the freedom that videogames give to players.

The proposed method to apply a dramatic structure to a
branching quest involves the adaptation of the quest’s plot in
real time to approximate the current story arc to an expected
story arc. Such approximation requires the full estimation of
the current story arc, which must take into account past and
future player decisions. Since different storylines can occur
during a branching quest, a method to identify the player’s
preferences for future narrative events is needed to allow the
system to predict the most likely storyline that will occur.

C. Predicting Player’s Decisions in Branching Quests

In order to identify the path that a player will follow in a
branching quest, we adopted the method proposed by Lima et

al. [22][23], which was originally designed to identify the
users’ preferences for narrative events using machine learning
and the Big Five personality model in an interactive
storytelling system. In the present work, we extended and
applied the model proposed by Lima et al. [22] in a game
context. To assess the personality of players, we directly
integrated the BFI-10 [24] questionnaire into our game. So,
before starting the game, players must answer the 10 questions
of the BFI-10, which will measure their personalities.
Although less invasive solutions to integrate the BFI-10
questionnaire into games exist, such as the use of story-related
interactive scenes [6], we opted for this simpler solution,
since, although assessing players’ personalities is part of this
work, it is not its main focus.

For the preference model, we used a set of artificial neural
networks trained to classify player preferences for specific
quest decisions. As illustrated in Fig. 4, each artificial neural
network is trained to identify the predilections of players for
the possible choices of a branching node in the tree structure
of a quest. The neural networks use a single hidden layer and
are trained by a standard back-propagation learning algorithm
using a sigmoidal activation function. The input for all neural
networks is defined by the five scores of the Big Five factors
(Openness, Conscientiousness, Extraversion, Agreeableness,
and Neuroticism), which are obtained through the BFI-10
questionnaire. Their output is defined by the possible choices
available for their respective branching nodes.

The dataset used to train the artificial neural networks of
our preference model was collected from game sessions that
occurred as part of a user evaluation test conducted for a
previous work on the procedural generation of branching
quests [8]. A total of 38 players played a prototype game with
the branching quests used for the present work. During the
game sessions, players had their personalities assessed
through the BFI-10 questionnaire and their decisions on each

branching node were automatically registered by the game.
The artificial neural networks of the preference model were
then trained and evaluated according to a 10-fold cross-
validation strategy (using the methodology described by Lima

et al. [22]). The results indicate that our preference model has
an average accuracy of 87.2%.

Fig. 4. Structure of neural networks used in the preferece model: 𝐹⃗ is the

player personality vector (five values representing the scores of the Big

Five factors), and 𝑏𝑖 represents the number of choices in the i-th branching

point of the quest tree.

The preference model allows the system to predict future
player’s decisions in branching nodes at any time during the
game. With this information, the system can estimate a
possible final plot for the branching quest.

D. The Dynamic Story Arcs of Interactive Branching Quests

The current story arc for a branching quest is automatically
calculated as the player progresses through the events of the
quest in real time. By combining past events and player
actions with the events that are anticipated for the player
(predicted by preference model), the current story arc can be
dynamically estimated in response to the actions of the player.

Given that a quest plot is an indexed sequence of events
Ψ𝑗E𝑘 = {𝑒1, 𝑒2, … , 𝑒𝑛}, the player’s progress can be

determined by the current quest event 𝑒π, where 𝜋 is the index
of the current event. The quest starts with the event 𝑒1 (𝜋 =
1) and ends when the player completes 𝑒𝑛 (𝜋 = 𝑛). As both
symbolic and numeric representations of story arcs are created
according to a quest plot, the index 𝜋 can also be used to mark
the progress of the player in the story arc of the quest.

The current story arc is updated in response to player
actions (e.g., encountering and fighting enemies, finding and
using items, interacting with non-player characters) and plot
events from other active quests. In both cases, the symbolic
representation of the story arc is updated by adding the tension
symbols of the new actions/events at index 𝜋 according to the
tension symbol associated with the operator related to the
action/event, which is defined in the elements of the planning
problem (see Section III – A).

For example, considering a player 𝑃1 that has just started
quest Ψ1 (presented in Section III – A) and assuming that the
preference model indicates that this player will follow
branches 𝐸1 + 𝐸2 + 𝐸5 , the current story arc for 𝑃1 and Ψ1
can be expressed in the symbolic notation as:

Neural Network 1

input output
(2 choices)

h
id

d
e

n
 la

ye
r

Branching Quest

Neural Network 2

input

h
id

d
e

n
 la

ye
r

output
(3 choices)

13

𝑃1Ψ1𝑎𝑟𝑐
𝑠𝑦𝑚 = {+, +, =, +, +, =, +, = , −, −, =, −, −},

where the symbol with underbar (+) indicates the current
position of the player in the story arc according to index 𝜋.

Assuming that, after starting quest Ψ1, the player performs
the first two events as expected in the quest plot (watches
karen starve and receives the request of food from

elizabeth in the shelter). However, when going to the
store (the 3rd event of the quest), the player meets an enemy.
The enemy encounter is not part of the quest plot, but it will
affect the narrative tension. Therefore, the tension produced
by the encounter event is inserted in the story arc at index 𝜋:

𝑃1Ψ1𝑎𝑟𝑐
𝑠𝑦𝑚 = {+, +, +, =, +, +, =, +, = , −, −, =, −, −},

where the overbar (+) indicates the inserted symbol.

The narrative tension of the quest can also be affected by
plot events from other active quests. For example, after killing
the villagemonster1 in the 7th event of the quest, the player

may decide to interact with some character needing help in the
village to start a new side-quest Ψ2 (e.g. this character
requests the player to find a syringe). Since the plot of Ψ2 has:

request-item(david, james, syringe, village),

go(james, village, hospital), get(james,

syringe, hospital), go(james, hospital,

village),deliver(james,david,syringe,village),

and assuming that the player 𝑃1 completes all the events of Ψ2
before proceeding to the next objective of Ψ1, the story arc of
𝑃1Ψ1 will be updated and the tension variation values

produced by the events of Ψ2 are inserted at index 𝜋:

𝑃1Ψ1𝑎𝑟𝑐
𝑠𝑦𝑚 = {+, +, +, =, +, +, +, =, +, =, −, =, +, = , −, −, =, −, −},

By calculating and updating the story arc of a branching
quest according to player actions, the system can estimate the
current story arc of a quest at any time during the game.

E. Adapting the Story Arcs of Branching Quests

The proposed method to adapt the plot of a branching
quest to approximate the current story arc to an expected story
arc relies on the dynamic structure of the planning problems
used to define the quest’s branches, which are solved by a
planner in real time to generate the final storyline for the quest.
By modifying the world state, current goals, and performing
replanning procedures, the system can adapt the plot and
introduce new events into the quest, leading the player to
situations that sufficiently increase or decrease the dramatic
tension of the narrative to achieve the approximation of the
current story arc to the expected story arc.

The plot adaptions that can be performed by the system are
defined in the adaptation library, which is manually
constructed by a human author according to the type of the
game’s possible interactions and events. The adaptation
library is a set 𝐿 = {𝑚1, 𝑚2, … , 𝑚𝑛}, where each member of
𝐿 is a 5-tuple 𝑚𝑖 = (𝛾𝑖 , 𝛼𝑖 , 𝛽𝑖 , 𝛿𝑖 , 𝜃𝑖). The elements of 𝑚𝑖 are:

• 𝛾𝑖 defines the modification effect of 𝑚𝑖, which
can increase or decrease the dramatic tension of
the narrative;

• 𝛼𝑖 is a set of literals that establish event
preconditions (i.e., the narrative events that
enable 𝑚𝑖 to occur). For example, 𝛼𝑖 =
{go(CH, PL1, PL2)} defines that 𝑚𝑖 can only

be applied if the current narrative event is a go

event. In this case, since CH, PL1, and PL2 are
variable terms, any ground terms are accepted for
the narrative event. But if 𝛼𝑖 = {deliver(CH1,
elizabeth, IT, PL), deliver(CH1,

david, IT, PL)}, then 𝑚𝑖 can only occur if
the current event is a deliver event where an

item IT (any item) is being delivered by a

character (any character) to elizabeth or

david (ground terms). When 𝛼𝑖 = ∅, there are
no event preconditions and 𝑚𝑖 can be applied in
sequence to any event of the quest;

• 𝛽𝑖 is a set of literals defining state preconditions
(i.e., literals that must hold in the current world
state for 𝑚𝑖 to be applied). For example, 𝛽𝑖 =
{ know-request(james, CH2, IT) }

establishes that 𝑚𝑖 can only occur if james
knows that he has been requested by a character
CH2 to find and deliver an item IT. Since know-

request is added to the world state as an effect

of the request operator and removed from the

world state as an effect of the deliver operator,

𝑚𝑖 can occur at any moment while james is
searching or delivering IT. Function symbols
can also be used to represent terms. For example,
𝛽𝑖 = { at(enemy(EN), player-

location(PL)) } defines that 𝑚𝑖 can only
occur if there is an enemy EN (any enemy) at the

current player location PL. When 𝛽𝑖 = ∅, there
are no state preconditions;

• 𝛿𝑖 is a set of literals that define state
modifications (i.e., literals to be added or
removed from the current world state where 𝑚𝑖
is being applied). For example, considering 𝛼𝑖 =
{go(CH, PL1, PL2)}, the state modifications

𝛿𝑖 = { ¬open(PL2), at(key(PL2, KE),

PL1)} establish that the place PL2 will not be
open (the negation symbol ¬ represents the
deletion of the literal from the current world
state) and a key KE for PL2 will be added to the

location PL1. The values of the variable terms of

𝛿𝑖 are established according to the terms of 𝛼𝑖 ,
which are defined according to the ground terms
of the go event where 𝑚𝑖 is being applied;

• 𝜃𝑖 is a set of literals that define goal
modifications (i.e., literals to be added or
removed from a goal state that is created using as
basis the world state holding after the completion
of the current event where 𝑚𝑖 is being applied).
For example, 𝜃𝑖 = { open(PL2) } defines

open(PL2) as an extra goal to be accomplished
by the player before he resumes the original
events of the quest. As will be explained below,
these goals are used by the planner to generate
and introduce new events into the quest plot.

In our implementation, six plot adaptions were tested.
Three of them were designed to increase the dramatic tension
of the narrative: (1) spawn an enemy at the current player
location (forcing the player to fight and kill the enemy); (2)
block the player passage (forcing him to find a key or another
item to open the passage); and (3) make the player lose or
break an item that is being delivered (inducing the player to
find another item). The other three plot adaptions were

14

designed to decrease the tension: (1) spawn an item that the
player needs at the current player location (making the player
find the item easily); (2) spawn an assistant character at the
current player location to kill an enemy (helping the player to
eliminate the threat); and (3) spawn an assistant character at
the current player location to give the player an item that the
player needs (avoiding the item search process).

For example, the plot adaptation to increase the narrative
tension by blocking the player passage is represented in the
adaptation library as:

𝑚1 = { 𝛾1 = 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒, 𝛼1 = {go(CH, PL1, PL2)}, 𝛽1 =
∅, 𝛿1 = {¬open(PL2), at(key(PL2, KE), PL1)},
𝜃1 = {open(PL2), know-was-closed(CH, PL1)}}.

An example of plot adaptation to decrease the narrative
tension involves spawning an item that the player needs at the
current player location, shown in the adaptation library as:

𝑚2 = {𝛾2 = 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒, 𝛼2 = ∅, 𝛽2 = {know-request(
james, CH2, IT)}, 𝛿2 = {at(IT, player-location(
PL))}, 𝜃2 = {has(james, IT)}} .

Our quest adaptation algorithm is associated with a quest
instance, and maintains the symbolic representation of the
current story arc for the quest, which is initially estimated by
the preference model (as described in Section III – C). Every
time the player performs a relevant action (i.e., an action that
can affect the narrative tension), the algorithm compares the
current tension values of the current story arc and the desired
story arc to decide whether a plot adaptation is necessary or
not. A threshold value Ω defines the maximum acceptable
error for the difference between the tension values of the story
arcs. In our experiments, we let Ω = 0.07.

Once given as input the current story arc 𝑃𝑗 Ψ𝑘𝑎𝑟𝑐

𝑠𝑦𝑚 , a

desired story arc 𝑑𝑎𝑟𝑐
𝑠𝑦𝑚

 (both in the symbolic notation), and the
index of the current event 𝜋, the process to adapt a branching
quest in real time comprises the following steps:

1. Calculate the scaled story arcs 𝑃𝑗Ψ𝑘 𝑎𝑟𝑐

𝑠𝑐𝑎𝑙𝑒𝑑 and

𝑑𝑎𝑟𝑐
𝑠𝑐𝑎𝑙𝑒𝑑 using Equations (1) and (2) (defined in

Section III – B), according to 𝑃𝑗Ψ𝑘 𝑎𝑟𝑐

𝑠𝑦𝑚 and 𝑑𝑎𝑟𝑐
𝑠𝑦𝑚

;

2. Calculate the difference between the tension values

of 𝑑𝑎𝑟𝑐
𝑠𝑐𝑎𝑙𝑒𝑑

𝜋
 and 𝑃𝑗Ψ𝑘 𝑎𝑟𝑐

𝑠𝑐𝑎𝑙𝑒𝑑

𝜋
 using Equation (3);

3. If 𝑑𝑖𝑓𝑓 (𝑑𝑎𝑟𝑐
𝑠𝑐𝑎𝑙𝑒𝑑

𝜋
, 𝑃𝑗Ψ𝑘 𝑎𝑟𝑐

𝑠𝑐𝑎𝑙𝑒𝑑

𝜋
) < Ω:

a. No plot adaptations are necessary.

4. Otherwise:

a. Identify the modification type (𝜆) required
for the adaptation:

i. If 𝑑𝑎𝑟𝑐
𝑠𝑐𝑎𝑙𝑒𝑑

𝜋
> 𝑃𝑗 Ψ𝑘𝑎𝑟𝑐

𝑠𝑐𝑎𝑙𝑒𝑑

𝜋
:

1. 𝜆 = 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒;

ii. Otherwise:

1. 𝜆 = 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒;

b. Get from the adaptation library 𝐿 all plot
modifications of type 𝛾𝑖 = 𝜆 where 𝛼𝑖 and
𝛽𝑖 hold in the current event and world state;

c. Simulate the application of all accepted plot
modifications in the current quest, which

will produce a set of plot variants 𝑉 =
{𝑣𝑎𝑟1 , 𝑣𝑎𝑟2, … , 𝑣𝑎𝑟𝑛}.

d. Calculate the scaled story arcs 𝑣𝑎𝑟𝑖𝑎𝑟𝑐
𝑠𝑐𝑎𝑙𝑒𝑑

for all simulated plot variants 𝑣𝑎𝑟𝑖 ∈ 𝑉.

e. Compare the story arcs 𝑣𝑎𝑟𝑖𝑎𝑟𝑐
𝑠𝑐𝑎𝑙𝑒𝑑 and

𝑑𝑎𝑟𝑐
𝑠𝑐𝑎𝑙𝑒𝑑 using Equation (4), and then select

the plot 𝑣𝑎𝑟𝑖 whose story arc 𝑣𝑎𝑟𝑖𝑎𝑟𝑐
𝑠𝑐𝑎𝑙𝑒𝑑

produces the smallest error in comparison

with 𝑑𝑎𝑟𝑐
𝑠𝑐𝑎𝑙𝑒𝑑 ;

f. Update the plot of the current quest Ψ𝑘
according to the selected 𝑣𝑎𝑟𝑖.

When applying a plot modification 𝑚𝑖 to a quest, the state
modifications 𝛿𝑖 ∈ 𝑚𝑖 are directly used to modify the current
world state of the quest. In addition, the goal modifications
𝜃𝑖 ∈ 𝑚𝑖 are used to establish new intermediate goals for the
current event 𝑒𝑖 . These elements are used to define a new
planning problem, where the current world state (modified
according to 𝛿𝑖 ∈ 𝑚𝑖) is used to establish the initial state (𝑆0),
and the ground literals of the state 𝑠𝑡𝑖 ∈ 𝑒𝑖 (the state that hold
after 𝑒𝑖), complemented with the goals of 𝜃𝑖 , are used to
establish the goal state (𝐺𝑖). The planning problem is then
solved by a planner, which generates a new sequence of events
to be added to the quest. In order to avoid inconsistencies
caused by these new events and state modifications, a
replanning procedure is performed in all planning problems of
future branches of the quest.

For example, let us consider the following situation:

• A player 𝑃2 is at the 3rd event of quest Ψ1 (𝜋 =
3);

• The preference model indicates that 𝑃2 will
follow branches 𝐸1 + 𝐸2 + 𝐸4 (described in
Section III – A);

• The three-act story arc is the desired story arc for

quest Ψ1 (𝑑𝑎𝑟𝑐
𝑠𝑦𝑚

= {+, +, +, −}).

• The current story arc is: 𝑃2Ψ1𝑎𝑟𝑐
𝑠𝑦𝑚 =

{+, +, =, +, +, −, −, = , −, −}.

By converting 𝑑𝑎𝑟𝑐
𝑠𝑦𝑚

 and 𝑃2Ψ1𝑎𝑟𝑐
𝑠𝑦𝑚 to their numeric

representations, and then scaling them to the same time
intervals (time is scaled to the interval [1, 10] and tension is
scaled to the interval [0, 1]), the story arcs can be compared (a
visual comparison is shown in Fig. 5):

𝑑𝑎𝑟𝑐
𝑠𝑐𝑎𝑙𝑒𝑑 = {0.33, 0.33, 0.66, 0.66, 0.66, 1.00, 1.00, 0.66,

0.66, 0.66},

𝑃2Ψ1𝑎𝑟𝑐
𝑠𝑐𝑎𝑙𝑒𝑑 = {0.25, 0.50, 0.50, 0.75, 1.00, 0.75, 0.50, 0.50,

0.25, 0.00}.

With both story arcs scaled to the same intervals, the

difference between the tension values of 𝑑𝑎𝑟𝑐
𝑠𝑐𝑎𝑙𝑒𝑑

𝜋
 and

𝑃2Ψ1𝑎𝑟𝑐
𝑠𝑐𝑎𝑙𝑒𝑑

𝜋
 can be calculated:

𝑑𝑖𝑓𝑓 (𝑑𝑎𝑟𝑐
𝑠𝑐𝑎𝑙𝑒𝑑

𝜋
, 𝑃2Ψ1𝑎𝑟𝑐

𝑠𝑐𝑎𝑙𝑒𝑑

𝜋
) = (0.66 − 0.50)2 = 0.0277

Considering that 𝑑𝑖𝑓𝑓 (𝑑𝑎𝑟𝑐
𝑠𝑐𝑎𝑙𝑒𝑑

𝜋
, 𝑃2Ψ1𝑎𝑟𝑐

𝑠𝑐𝑎𝑙𝑒𝑑

𝜋
) is less than Ω,

no interferences in the plot are required at this point.

15

Fig. 5. Visual comparison beteween the desired story arc 𝑑 and the current

story arc for quest 𝑃2Ψ1. The doted red line indicates the current player

position in the story arc.

However, the player may decide to explore the world on
his way to the store and may end up finding and using a heal
item (the item is automatically used when collected), which –
according to the tension effect of heal operator – reduces the
tension of the narrative. The action of collecting/using the
item will trigger another run of the quest adaptation procedure
to verify the consistency of the current story arc. Considering
the heal event, the symbolic representation of the current

story arc is updated to:

𝑃2Ψ1𝑎𝑟𝑐
𝑠𝑦𝑚 = {+, +, −, =, +, +, −, −, = , −, −},

then it is scaled to:

𝑃2Ψ1𝑎𝑟𝑐
𝑠𝑐𝑎𝑙𝑒𝑑 = {0.33, 0.66, 0.33, 0.33, 0.66, 1.00, 0.66, 0.33,

0.33, 0.00},

and the difference between the tension values of 𝑑𝑎𝑟𝑐
𝑠𝑐𝑎𝑙𝑒𝑑

𝜋
 and

𝑑𝑎𝑟𝑐
𝑠𝑐𝑎𝑙𝑒𝑑

𝜋
 can be calculated as:

𝑑𝑖𝑓𝑓 (𝑑𝑎𝑟𝑐
𝑠𝑐𝑎𝑙𝑒𝑑

𝜋
, 𝑃2Ψ1𝑎𝑟𝑐

𝑠𝑐𝑎𝑙𝑒𝑑

𝜋
) = (0.66 − 0.33)2 = 0.1111

As result, 𝑑𝑖𝑓𝑓 (𝑑𝑎𝑟𝑐
𝑠𝑐𝑎𝑙𝑒𝑑

𝜋
, 𝑃2Ψ1𝑎𝑟𝑐

𝑠𝑐𝑎𝑙𝑒𝑑

𝜋
) will be greater

than Ω (0.07), so a plot adaptation procedure is required to
approximate the current story arc to the desired story arc (a
visual comparison of both story arcs is presented in Fig. 6).

Fig. 6. Visual comparison beteween the desired story arc 𝑑 and the current

story arc for quest 𝑃2Ψ1 after the player finding and using a heal item. The

doted red line indicates the current player position in the story arc.

Considering that 𝑑𝑎𝑟𝑐
𝑠𝑐𝑎𝑙𝑒𝑑

𝜋
> 𝑃2Ψ1𝑎𝑟𝑐

𝑠𝑐𝑎𝑙𝑒𝑑

𝜋
, the dramatic

tension of the current story arc must be increased, therefore
𝜆 = 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒. By testing the event and state preconditions
(𝛼𝑖 and 𝛽𝑖) of the plot adaptions 𝑚𝑖 ∈ 𝐿 where 𝛾𝑖 = 𝜆, two
possible plot adaptions for the current event are identified: (1)
block the player passage (𝑚1 ∈ 𝐿); and (2) spawn an enemy

at the current player location (𝑚3 ∈ 𝐿).

After identifying the possible plot adaptations, their
application in the current state is simulated and evaluated. As

previously presented, the state modifications 𝛿1 ∈ 𝑚1
comprise: ¬open(PL2), at(key(PL2, KE), PL1). Both

PL2 and PL1 are variable terms instantiated according to the

event precondition (𝛼1 = {go(CH, PL1, PL2)}) and the
current event where the precondition holds (go(james,

shelter, store)) . The function symbol key is also

instantiated by identifying the object that is a key to open PL2
(store), which is called keystore1. Therefore, the state

modifications are instantiated as ground terms:
¬open(store), at(keystore1, shelter). Similarly,

the goal modification 𝜃1 ∈ 𝑚1 is also instantiated as:
open(store), know-was-closed(james, store).

Assuming that the current world state comprises:

healthy(james), healthy (elizabeth),

open(shelter), open(store), at(elizabeth,

shelter), at(karen, shelter),starving(karen),

know-need(elizabeth, karen, food1), know-

request(james, elizabeth, food1), at(james,

village).

and since that the state that holds after the current event is:

healthy(james), healthy (elizabeth),

open(shelter), open(store), at(elizabeth,

shelter), at(karen, shelter),

starving(karen), know-need(elizabeth, karen,

food1), know-request(james, elizabeth,

food1), at(james, store).

a new planning problem can be defined, with initial state 𝑆0:

healthy(james), healthy (elizabeth),

open(shelter), at(elizabeth, shelter),

at(karen, shelter),starving(karen), know-

need(elizabeth, karen, food1), know-

request(james, elizabeth, food1), at(james,

village), at(keystore1, shelter).

and with goal state 𝐺𝑖 comprising:

healthy(james), healthy (elizabeth),

open(shelter), at(elizabeth, shelter),

at(karen, shelter), starving(karen), know-

need(elizabeth, karen, food1), know-

request(james, elizabeth, food1), at(james,

store), open(store), know-was-closed(james,

store).

After solving the planning problem, a new sequence of
events is generated, which is then added to the quest plot to
define a plot variant. Replanning procedures are performed in
all remaining quest branches to guarantee the logical
consistency of the plot. The resulting plot variant is (new
events were highlighted in bold):

𝑣𝑎𝑟1 = ..., fail-to-open(james, store,

village), go(james, village, shelter),

getkey(james, keystore1, shelter), go(james,

shelter, store), open(james, store,

keystore1, village), go(james, village,

store), ask(james, michael, food1, store),

request-payment(michael, james, store),

pay(james, michael, store), give(michael,

james, food1, store), go(james, store,

shelter), deliver(james, elizabeth, food1,

shelter), feed(elizabeth, karen, food1,

shelter).

A similar process is performed for plot adaptation 𝑚3 ,
which produces another plot variant:

0

0,2

0,4

0,6

0,8

1

0 1 2 3 4 5 6 7 8 9 10

Te
n

si
o

n

Time

Three-Act Story Arc (d) Current Story Arc (P₂Ψ₂)

0

0,2

0,4

0,6

0,8

1

0 1 2 3 4 5 6 7 8 9 10

Te
n

si
o

n

Time

Three-Act Story Arc (d) Current Story Arc (P₂Ψ₂)

16

𝑣𝑎𝑟2 = ..., kill(james, monster1, village),

go(james, village, store), ask(james,

michael, food1, store), request-

payment(michael, james, store), pay(james,

michael, store), give(michael, james, food1,

store), go(james, store, shelter),

deliver(james, elizabeth, food1, shelter),

feed(elizabeth, karen, food1, shelter).

After generating all plot variants, their story arcs are
calculated:

𝑣𝑎𝑟1𝑎𝑟𝑐
𝑠𝑐𝑎𝑙𝑒𝑑 = {0.33, 0.33, 0.66, 1.0, 1.0, 0.66, 1.00, 0.66,

0.33, 0.00}

𝑣𝑎𝑟2𝑎𝑟𝑐
𝑠𝑐𝑎𝑙𝑒𝑑 = {0.25, 0.25, 0.50, 0.50, 0.75, 1.00, 0.75, 0.50,

0.25, 0.00}

and then are compared with the desired story arc:

𝑎𝑟𝑐𝑑𝑖𝑓𝑓(𝑑𝑎𝑟𝑐
𝑠𝑐𝑎𝑙𝑒𝑑 , 𝑣𝑎𝑟1𝑎𝑟𝑐

𝑠𝑐𝑎𝑙𝑒𝑑) = 0.0888

𝑎𝑟𝑐𝑑𝑖𝑓𝑓(𝑑𝑎𝑟𝑐
𝑠𝑐𝑎𝑙𝑒𝑑 , 𝑣𝑎𝑟2𝑎𝑟𝑐

𝑠𝑐𝑎𝑙𝑒𝑑) = 0.0784

Both adapted plots improve the story arc of the quest
(because the difference between the previous and the desired
story arcs was 0.1111). Since 𝑎𝑟𝑐𝑑𝑖𝑓𝑓(𝑑𝑎𝑟𝑐

𝑠𝑐𝑎𝑙𝑒𝑑 , 𝑣𝑎𝑟2𝑎𝑟𝑐
𝑠𝑐𝑎𝑙𝑒𝑑) <

𝑎𝑟𝑐𝑑𝑖𝑓𝑓(𝑑𝑎𝑟𝑐
𝑠𝑐𝑎𝑙𝑒𝑑 , 𝑣𝑎𝑟1𝑎𝑟𝑐

𝑠𝑐𝑎𝑙𝑒𝑑), the plot generated for 𝑣𝑎𝑟2 is

used to update the current plot of quest Ψ1.

IV. APPLICATION AND EVALUATION

The game used to test and evaluate the proposed quest
adaptation method is a 2D RPG developed for a previous
project [5][6][7][8], in which we incorporated the proposed
system to adapt the plot of branching quests in real-time (Fig.
7). The game pertains to a zombie survival genre, telling the
story of a family that lives in a world dominated by a zombie
plague. The gameplay is designed to be driven by the story
quests, but the player is free to explore the game world. While
performing a quest or exploring the world, players can collect
items, deliver items, interact with non-player characters, kill
enemies, open locked doors, fix broken bridges, cure infected
characters, and feed those who starve. The game comprises 14
story quests, of which 3 were created by a professional game
designer and 11 were generated by a procedural quest
generation algorithm (as described in [8]). The game also
includes 4 side-quests (quests that are not related to the main
story of the game), which were algorithmically generated.
More details about the game are presented in [7] and [8].

Fig. 7. Scene from the game prototype: the player is faced with the

decision that will lead quest Ψ1 to branches E4, E5, or E6.

To evaluate the proposed quest adaptation method, we
conducted a user test to analyze the progress of real players

through the dynamic plot of the adaptive quests. A total of 12
volunteers participated in the study (11 bachelor’s students
and 1 master’s student). Ten subjects were male and two
female. Ages ranged from 18 to 25 years (mean of 20.3). All
of them play video games at least weekly.

For the experiment, we created two versions of our game:
(1) Adaptive Version, which fully uses the proposed method
to adapt the plot of quests using the three-act story arc as the
desired story; and (2) Base Version, wherein the quest
adaptation process is disabled. Both versions were designed to
automatically capture and store all player actions, decisions,
and the story arcs experienced by players in all quests.

The participants were divided into two groups: 6 of them
were randomly selected to play the Adaptive Version, and the
other 6 participants played the Base Version. Before testing
the game, all subjects filled a consent form, answered a basic
demographic questionnaire, and then were asked to freely play
our game. To avoid biased experiences, we did not mention to
participants that the game was adapting the plot of quests.

Although we applied our quest adaption method in all
quests of the Adaptive Version of the game, not all players
were experiencing the same quests during a single
playthrough of the game. As described in [8], our game adopts
a tree structure to establish hierarchical dependencies between
story quests, which defines the storyline of the game and the
quests made available according to player decisions in
previous branching quests. Therefore, we shall focus the
analysis for this study in the first quest of the game Ψ1
(described in Section III), which is played by all players and
allows us to compare both versions of the game.

All participants were able to complete the game. On
average, each session of the Base Version lasted 15.6 minutes
(standard deviation 3.1), and each session of the Adaptive
Version lasted 19.7 minutes (standard deviation 4.3). The
average time required by players to complete quest Ψ1 on the
Base Version was 4.8 minutes (standard deviation 3.3), and
6.9 minutes on the Adaptive Version (standard deviation 3.8).

To analyze the story arcs experienced by players in quest
Ψ1 , we compared the differences between the story arcs
effectively experienced by players and the desired story arc
(using equation (4)). The average difference between the story
arcs in the Base Version was 0.0936 (standard deviation
0.0272). In the Adaptive Version, the average difference was
0.0282 (standard deviation 0.0113), which is more than three
times smaller than the difference obtained for the Base
Version. Fig. 8 shows the best and worst story arcs for the
Adaptive Version as compared to the desired story arc. The
best and worst story arcs for the Base Version are in Fig. 9.

Fig. 8. Comparison of the three-act story arc with the best and worst story

arcs experienced by players in quest Ψ1 of the Adaptive Version.

0

0,2

0,4

0,6

0,8

1

0 1 2 3 4 5 6 7 8 9 10

Te
n

si
o

n

Time

Three-Act Story Arc Best Story Arc Worst Story Arc

17

Fig. 9. Comparison of the three-act story arc with the best and worst story

arcs experienced by players in quest Ψ1 of the Base Version.

V. CONCLUDING REMARKS

The paper presented a novel quest adaptation method
combining automated planning, player modeling and dramatic
structures. Starting with sound and coherent branching quests
designed by professional game designers or by procedural
content generation algorithms, the method is capable of
adapting the plot of quests in real-time by introducing new
events that will lead the player to situations that sufficiently
increase or decrease the dramatic tension of the narrative.

The results of our experiment show that the proposed
method is indeed capable of approximating the story arcs of
quests to an expected story arc, as players progress through
the narrative and freely interact with the game world. The time
required by players to complete the adapted quests is of course
longer than in non-adaptive quests, since the adaptations
introduce new events into the plot. This, however, did not
prevent the participants to complete the game, and their
positive feedback, especially the enthusiasm demonstrated by
them when they were told that the game was adapting the
quests according to their actions, is a welcome stimulus for the
continuation of our work.

Apart from our commitment to validate our method in
more rigorous user studies, one promising future work that
caught our attention is the automatic measurement of the
tension produced by each type of quest event according to past
player data. Currently, these effects are manually defined by
human authors, who have to judge which events can increase
or decrease the dramatic tension of the narrative according to
their past experience. In this context, the use of sensors to
collect players’ biometric data and vital signals in combination
with machine learning techniques, can be useful to identify
patterns in the emotional reactions of players. These patterns
would then be used by our quest adaptation method as a source
of information about the dramatic impact of each narrative
event, in order to attain a closer conformity between system-
generated and predefined story arcs.

ACKNOWLEDGMENTS

We would like to thank CNPq (National Council for
Scientific and Technological Development) and FINEP
(Brazilian Innovation Agency), which belong to the Ministry of
Science, Technology, and Innovation, for the financial support.

REFERENCES

[1] J. Juul, “A clash between game and narrative. A thesis on computer

games andinteraction fiction,” M.S. Thesis, University of Copenhagen,

Copenhagen, Denmark, 1999.

[2] E. Adams, “The Designer's Notebook: Three Problems for Interactive

Storytellers,” Gamasutra, 1999. [online]. Available at:
http://www.gamasutra.com/view/feature/131821/the_designers_noteb

ook_three_.php

[3] B. Ip, “Narrative Structures in Computer and Video Games: Part 1:
Context, Definitions, and Initial Findings,” Games and Culture, vol. 6

(2), pp. 103-134, 2011, doi: 10.1177/1555412010364982.

[4] B. Ip, “Narrative Structures in Computer and Video Games: Part 2:

Emotions, Structures, and Archetypes,” Games and Culture, vol. 6 (3),

pp. 203-244, 2011, doi: 10.1177/1555412010364984.

[5] E. S. Lima, B. Feijó, and A. L. Furtado, "Hierarchical Generation of

Dynamic and Nondeterministic Quests in Games," in Proceedings of
the 11th International Conference on Advances in Computer

Entertainment Technology, Funchal, Portugal, 2014, Article N. 24.

[6] E. S. Lima, B. Feijó, and A. L. Furtado, "Player Behavior and
Personality Modeling for Interactive Storytelling in Games,"

Entertainment Computing, vol. 28, pp. 32-48, 2018.

[7] E. S. Lima, B. Feijó, and A. L. Furtado, "Procedural Generation of
Quests for Games Using Genetic Algorithms and Automated

Planning," in Proceedings of the XVIII Brazilian Symposium on
Computer Games and Digital Entertainment (SBGames 2019), Rio de

Janeiro, Brazil, 2019, pp. 495-504, doi: 0.1109/SBGames.2019.00028

[8] E. S. Lima, B. Feijó, and A. L. Furtado, "Procedural Generation of

Branching Quests for Games," Entertainment Computing, 2022.

[9] A. Sullivan, M. Mateas, and N. Wardrip-Fruin, “Rules of engagement:

Moving beyond combat-based quests,” in Proceedings of the Intelligent

Narrative Technologies III Workshop (INT3 '10), 2010, Article No. 11.

[10] P. Ammanabrolu, W. Broniec, A. Mueller, J. Paul, and M. O. Riedl,
“Toward Automated Quest Generation in Text-Adventure Games,”

arXiv:1909.06283 [cs.CL], 2019.

[11] T. Chongmesuk, and V. Kotrajaras, “Multi-Paths Generation for
Structural Rule Quests,” in Proceedings of the 16th International Joint

Conference on Computer Science and Software Engineering (JCSSE),

pp. 97-102, 2019, doi: 10.1109/JCSSE.2019.8864168.

[12] B., Li, and M. O., Riedl, “Planning for Individualized Experiences with

Quest-Centric Game Adaptation,” in Proceedings of the ICAPS 2010

Workshop on Planning in Games, Toronto, Canada, 2010.

[13] B. Li, and M. O. Riedl, “An Offline Planning Approach to Game

Plotline Adaptation,” in Proceedings of the 6th Conference on
Artificial Intelligence for Interactive Digital Entertainment, Palo Alto,

California, pp. 45-50, 2010.

[14] M. Freilão, “Affective Narratives for Engagement in Digital Games,”
M.S. Thesis in Computer Engeneering, Faculdade de Engenharia,

Universidade do Porto, Porto, Portugal, 2020.

[15] S. P. Hernandez, V. Bulitko, and M. Spetch, “Keeping the Player on an
Emotional Trajectory in Interactive Storytelling,” in Proceedings of the

11th AAAI Conference on Artificial Intelligence and Interactive

Digital Entertainment, pp. 65-71, 2015.

[16] S. P. Hernandez, V. Bulitko, and E. Hilaire, “Emotion-based interactive
storytelling with Artificial Intelligence,” in Proceedings of the Tenth

AAAI Conference on Artificial Intelligence and Interactive Digital

Entertainment (AIIDE'14), pp. 146-152, 2014.

[17] A. Zook, S. Lee-Urban, M. R. Drinkwater, and M. O. Riedl, “Skill-

based Mission Generation: A Data-driven Temporal Player Modeling
Approach,” in Proceedings of the The third workshop on Procedural

Content Generation in Games (PCG'12), pp. 1-8, 2012.

[18] J. Howard, Quests: Design, Theory, and History in Games and

Narratives. Natick, Massachusetts: A K Peters/CRC Press, 2008.

[19] B. Bonet, and H. Geffner, “Planning as Heuristic Search,” Artificial

Intelligence, vol. 129 (1), pp. 5-33, 2001.

[20] J. Yorke, Into The Woods: How Stories Work and Why We Tell Them.

London, UK: Penguin, 2014.

[21] H. Koenitz, A. Di Pastena, D. Jansen, B. de Lint, and A. Moss, “The

Myth of ‘Universal’ Narrative Models,” in Rouse R., Koenitz H.,
Haahr M. (eds) Interactive Storytelling. ICIDS 2018. Lecture Notes in

Computer Science, vol. 11318, Springer, 2018.

[22] E. S. Lima, B. Feijó, and A. L. Furtado, "Adaptive Storytelling Based

on Personality and Preference Modeling," Entertainment Computing,

vol. 34, 100342, 2020, doi: 10.1016/j.entcom.2020.100342.

[23] E. S. Lima, B. Feijó, A. L. Furtado, and V. M. Gottin, "Personality and

Preference Modeling for Adaptive Storytelling," in Proceedings of the
XVII Brazilian Symposium on Computer Games and Digital

Entertainment, Foz do Iguaçu, Brazil, 2018, pp. 538-547.

[24] B. Rammstedt, and O. P. Johnb, “Measuring personality in one minute
or less: A 10-item short version of the Big Five Inventory in English

and German,” Journal of Research in Personality, vol. 41 (1), pp. 203-

212, 2007, doi: 10.1016/j.jrp.2006.02.001.

0

0,2

0,4

0,6

0,8

1

0 1 2 3 4 5 6 7 8 9 10

Te
n

si
o

n

Time

Three-Act Story Arc Best Story Arc Worst Story Arc

18

